All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.IterativeClassifierOptimizer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    IterativeClassifierOptimizer.java
 *    Copyright (C) 2014 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import java.util.Collections;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.IterativeClassifier;
import weka.classifiers.RandomizableClassifier;
import weka.classifiers.evaluation.Evaluation;
import weka.classifiers.evaluation.EvaluationMetricHelper;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.AdditionalMeasureProducer;

/**
 * Chooses the best number of iterations for an IterativeClassifier such as
 * LogitBoost using cross-validation or a percentage split evaluation.
 * 
 
 * Optimizes the number of iterations of the given iterative classifier using cross-validation or a percentage
 * split evaluation.
 * 

* * Valid options are:

* *

 -A
 *  If set, average estimate is used rather than one estimate from pooled predictions.
 * 
* *
 -L <num>
 *  The number of iterations to look ahead for to find a better optimum.
 *  (default 50)
* *
 -P <int>
 *  The size of the thread pool, for example, the number of cores in the CPU.
 *  (default 1)
* *
 -E <int>
 *  The number of threads to use, which should be >= size of thread pool.
 *  (default 1)
* *
 -I <num>
 *  Step size for the evaluation, if evaluation is time consuming.
 *  (default 1)
* *
 -F <num>
 *  Number of folds for cross-validation.
 *  (default 10)
* *
 -R <num>
 *  Number of runs for cross-validation.
 *  (default 1)
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.meta.LogitBoost)
* *
 -metric <name>
 *  Evaluation metric to optimise (default rmse). Available metrics:
 *  correct,incorrect,kappa,total cost,average cost,kb relative,kb information,
 *  correlation,complexity 0,complexity scheme,complexity improvement,
 *  mae,rmse,rae,rrse,coverage,region size,tp rate,fp rate,precision,recall,
 *  f-measure,mcc,roc area,prc area
* *
 -class-value-index <0-based index>
 *  Class value index to optimise. Ignored for all but information-retrieval
 *  type metrics (such as roc area). If unspecified (or a negative value is supplied),
 *  and an information-retrieval metric is specified, then the class-weighted average
 *  metric used. (default -1)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
* *
 
 * Options specific to classifier weka.classifiers.meta.LogitBoost:
 * 
* *
 -Q
 *  Use resampling instead of reweighting for boosting.
* *
 -P <percent>
 *  Percentage of weight mass to base training on.
 *  (default 100, reduce to around 90 speed up)
* *
 -L <num>
 *  Threshold on the improvement of the likelihood.
 *  (default -Double.MAX_VALUE)
* *
 -H <num>
 *  Shrinkage parameter.
 *  (default 1)
* *
 -Z <num>
 *  Z max threshold for responses.
 *  (default 3)
* *
 -O <int>
 *  The size of the thread pool, for example, the number of cores in the CPU. (default 1)
* *
 -E <int>
 *  The number of threads to use for batch prediction, which should be >= size of thread pool.
 *  (default 1)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -I <num>
 *  Number of iterations.
 *  (default 10)
* *
 -percentage <num>
 *  The percentage of data to be used for training (if 0, k-fold cross-validation is used).
 *  (default 0)
* *
 -order
 *  Whether to preserve order when a percentage split evaluation is performed.
 *  
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)
* *
 -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
* *
 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * 
* *
 -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
* * * @author Eibe Frank ([email protected]) * @version $Revision: 10141 $ */ public class IterativeClassifierOptimizer extends RandomizableClassifier implements AdditionalMeasureProducer { /** for serialization */ private static final long serialVersionUID = -3665485256313525864L; /** The base classifier to use */ protected IterativeClassifier m_IterativeClassifier = new LogitBoost(); /** The number of folds for the cross-validation. */ protected int m_NumFolds = 10; /** The number of runs for the cross-validation. */ protected int m_NumRuns = 1; /** The steps size determining when evaluations happen. */ protected int m_StepSize = 1; /** Whether to use average. */ protected boolean m_UseAverage = false; /** The number of iterations to look ahead for to find a better optimum. */ protected int m_lookAheadIterations = 50; public static Tag[] TAGS_EVAL; static { List evalNames = EvaluationMetricHelper.getAllMetricNames(); TAGS_EVAL = new Tag[evalNames.size()]; for (int i = 0; i < evalNames.size(); i++) { TAGS_EVAL[i] = new Tag(i, evalNames.get(i), evalNames.get(i), false); } } /** The evaluation metric to use */ protected String m_evalMetric = "rmse"; /** * The class value index to use with information retrieval type metrics. < 0 * indicates to use the class weighted average version of the metric". */ protected int m_classValueIndex = -1; /** * The thresholds to be used for classification, if the metric implements * ThresholdProducingMetric. */ protected double[] m_thresholds = null; /** The best value found for the criterion to be optimized. */ protected double m_bestResult = Double.MAX_VALUE; /** The best number of iterations identified. */ protected int m_bestNumIts; /** The number of threads to use for parallel building of classifiers. */ protected int m_numThreads = 1; /** The size of the thread pool. */ protected int m_poolSize = 1; /** The percentage of data to be used for training (if 0, k-fold cross-validation is used). */ protected double m_splitPercentage = 0.0; /** Whether to preserve order when a percentage split evaluation is performed. */ protected boolean m_preserveOrderInPercentageSplitEvaluation = false; /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "Optimizes the number of iterations of the given iterative classifier using cross-validation " + "or a percentage split evaluation."; } /** * String describing default classifier. */ protected String defaultIterativeClassifierString() { return "weka.classifiers.meta.LogitBoost"; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String useAverageTipText() { return "If true, average estimates are used instead of one estimate from pooled predictions."; } /** * Get the value of UseAverage. * * @return Value of UseAverage. */ public boolean getUseAverage() { return m_UseAverage; } /** * Set the value of UseAverage. * * @param newUseAverage Value to assign to UseAverage. */ public void setUseAverage(boolean newUseAverage) { m_UseAverage = newUseAverage; } /** * @return a string to describe the option */ public String numThreadsTipText() { return "The number of threads to use, which should be >= size of thread pool."; } /** * Gets the number of threads. */ public int getNumThreads() { return m_numThreads; } /** * Sets the number of threads */ public void setNumThreads(int nT) { m_numThreads = nT; } /** * @return a string to describe the option */ public String poolSizeTipText() { return "The size of the thread pool, for example, the number of cores in the CPU."; } /** * Gets the number of threads. */ public int getPoolSize() { return m_poolSize; } /** * Sets the number of threads */ public void setPoolSize(int nT) { m_poolSize = nT; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String stepSizeTipText() { return "Step size for the evaluation, if evaluation is time consuming."; } /** * Get the value of StepSize. * * @return Value of StepSize. */ public int getStepSize() { return m_StepSize; } /** * Set the value of StepSize. * * @param newStepSize Value to assign to StepSize. */ public void setStepSize(int newStepSize) { m_StepSize = newStepSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numRunsTipText() { return "Number of runs for cross-validation."; } /** * Get the value of NumRuns. * * @return Value of NumRuns. */ public int getNumRuns() { return m_NumRuns; } /** * Set the value of NumRuns. * * @param newNumRuns Value to assign to NumRuns. */ public void setNumRuns(int newNumRuns) { m_NumRuns = newNumRuns; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numFoldsTipText() { return "Number of folds for cross-validation."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String lookAheadIterationsTipText() { return "The number of iterations to look ahead for to find a better optimum."; } /** * Get the value of LookAheadIterations. * * @return Value of LookAheadIterations. */ public int getLookAheadIterations() { return m_lookAheadIterations; } /** * Set the value of LookAheadIterations. * * @param newLookAheadIterations Value to assign to LookAheadIterations. */ public void setLookAheadIterations(int newLookAheadIterations) { m_lookAheadIterations = newLookAheadIterations; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String splitPercentageTipText() { return "The percentage of data to be used for training (if 0, k-fold cross-validation is used)."; } /** * Get the value of SplitPercentage. * * @return Value of SplitPercentage. */ public double getSplitPercentage() { return m_splitPercentage; } /** * Set the value of SplitPercentage. * * @param newSplitPercentage Value to assign to SplitPercentage. */ public void setSplitPercentage(double newSplitPercentage) { m_splitPercentage = newSplitPercentage; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String preserveOrderInPercentageSplitEvaluationTipText() { return "Whether to preserve order when a percentage split evaluation is performed."; } /** * Get the value of PreserveOrderInPercentageSplitEvaluation. * * @return Value of PreserveOrderInPercentageSplitEvaluation. */ public boolean getPreserveOrderInPercentageSplitEvaluation() { return m_preserveOrderInPercentageSplitEvaluation; } /** * Set the value of PreserveOrderInPercentageSplitEvaluation. * * @param newPreserveOrderInPercentageSplitEvaluation Value to assign to PreserveOrderInPercentageSplitEvaluation. */ public void setPreserveOrderInPercentageSplitEvaluation(boolean newPreserveOrderInPercentageSplitEvaluation) { m_preserveOrderInPercentageSplitEvaluation = newPreserveOrderInPercentageSplitEvaluation; } /** * Builds the classifier. */ @Override public void buildClassifier(Instances data) throws Exception { if (m_IterativeClassifier == null) { throw new Exception("A base classifier has not been specified!"); } // Can classifier handle the data? getCapabilities().testWithFail(data); // Need to shuffle the data Random randomInstance = new Random(m_Seed); // Save reference to original data Instances origData = data; // Remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); if (data.numInstances() < m_NumFolds) { System.err.println("WARNING: reducing number of folds to number of instances in " + "IterativeClassifierOptimizer"); m_NumFolds = data.numInstances(); } // Local variables holding the actual number of folds and runs int numFolds = m_NumFolds; int numRuns = m_NumRuns; if (getSplitPercentage() != 0) { if ((getSplitPercentage() < 0) || (getSplitPercentage() > 100)) { throw new IllegalArgumentException("Split percentage in IterativeClassifierOptimizer not in [0,100]"); } numFolds = 1; numRuns = 1; } // Initialize datasets and classifiers Instances[][] trainingSets = new Instances[numRuns][numFolds]; Instances[][] testSets = new Instances[numRuns][numFolds]; final IterativeClassifier[][] classifiers = new IterativeClassifier[numRuns][numFolds]; if (getSplitPercentage() == 0) { for (int j = 0; j < numRuns; j++) { data.randomize(randomInstance); if (data.classAttribute().isNominal()) { data.stratify(numFolds); } for (int i = 0; i < numFolds; i++) { trainingSets[j][i] = data.trainCV(numFolds, i, randomInstance); testSets[j][i] = data.testCV(numFolds, i); classifiers[j][i] = (IterativeClassifier) AbstractClassifier.makeCopy(m_IterativeClassifier); classifiers[j][i].initializeClassifier(trainingSets[j][i]); } } } else { if (!getPreserveOrderInPercentageSplitEvaluation()) { data.randomize(randomInstance); } int trainSize = (int) Math.round(data.numInstances() * getSplitPercentage() / 100); int testSize = data.numInstances() - trainSize; trainingSets[0][0] = new Instances(data, 0, trainSize); testSets[0][0] = new Instances(data, trainSize, testSize); classifiers[0][0] = (IterativeClassifier) AbstractClassifier.makeCopy(m_IterativeClassifier); classifiers[0][0].initializeClassifier(trainingSets[0][0]); } // The thread pool to be used for parallel execution. ExecutorService pool = Executors.newFixedThreadPool(m_poolSize);; // Perform evaluation Evaluation eval = new Evaluation(data); EvaluationMetricHelper helper = new EvaluationMetricHelper(eval); boolean maximise = helper.metricIsMaximisable(m_evalMetric); if (maximise) { m_bestResult = Double.MIN_VALUE; } else { m_bestResult = Double.MAX_VALUE; } m_thresholds = null; int numIts = 0; m_bestNumIts = 0; int numberOfIterationsSinceMinimum = -1; while (true) { // Should we perform an evaluation? if (numIts % m_StepSize == 0) { double result = 0; double[] tempThresholds = null; // Shall we use the average score obtained from the folds or not? if (!m_UseAverage) { eval = new Evaluation(data); helper.setEvaluation(eval); for (int r = 0; r < numRuns; r++) { for (int i = 0; i < numFolds; i++) { eval.evaluateModel(classifiers[r][i], testSets[r][i]); } } result = getClassValueIndex() >= 0 ? helper.getNamedMetric(m_evalMetric, getClassValueIndex()) : helper.getNamedMetric(m_evalMetric); tempThresholds = helper.getNamedMetricThresholds(m_evalMetric); } else { // Using average score for (int r = 0; r < numRuns; r++) { for (int i = 0; i < numFolds; i++) { eval = new Evaluation(trainingSets[r][i]); helper.setEvaluation(eval); eval.evaluateModel(classifiers[r][i], testSets[r][i]); result += getClassValueIndex() >= 0 ? helper.getNamedMetric(m_evalMetric, getClassValueIndex()) : helper.getNamedMetric(m_evalMetric); double[] thresholds = helper.getNamedMetricThresholds(m_evalMetric); // Add thresholds (if applicable) so that we can compute average thresholds later if (thresholds != null) { if (tempThresholds == null) { tempThresholds = new double[data.numClasses()]; } for (int j = 0; j < thresholds.length; j++) { tempThresholds[j] += thresholds[j]; } } } } result /= (double)(numFolds * numRuns); // Compute average thresholds if applicable if (tempThresholds != null) { for (int j = 0; j < tempThresholds.length; j++) { tempThresholds[j] /= (double) (numRuns * numFolds); } } } if (m_Debug) { System.err.println("Iteration: " + numIts + " " + "Measure: " + result); if (tempThresholds != null) { System.err.print("Thresholds:"); for (int j = 0; j < tempThresholds.length; j++) { System.err.print(" " + tempThresholds[j]); } System.err.println(); } } double delta = maximise ? m_bestResult - result : result - m_bestResult; // Is there an improvement? if (delta < 0) { m_bestResult = result; m_bestNumIts = numIts; m_thresholds = tempThresholds; numberOfIterationsSinceMinimum = -1; } } numberOfIterationsSinceMinimum++; numIts++; if (numberOfIterationsSinceMinimum >= m_lookAheadIterations) { break; } // Set up result set, and chunk size int numberOfInvocations = numRuns * numFolds; final int N = numFolds; final int chunksize = numberOfInvocations / m_numThreads; Set> results = new HashSet>(); final int nIts = numIts; // For each thread for (int j = 0; j < m_numThreads; j++) { // Determine batch to be processed final int lo = j * chunksize; final int hi = (j < m_numThreads - 1) ? (lo + chunksize) : numberOfInvocations; // Create and submit new job Future futureT = pool.submit(new Callable() { @Override public Boolean call() throws Exception { for (int k = lo; k < hi; k++) { if (!classifiers[k / N][k % N].next()) { if (m_Debug) { System.err.println("Classifier failed to iterate for run " + ((k / N) + 1) + " and fold " + ((k % N) + 1) + " when performing iteration " + nIts + "."); } return false; } } return true; } }); results.add(futureT); } // Check that all classifiers succeeded try { boolean failure = false; for (Future futureT : results) { if (!futureT.get()) { failure = true; break; // Break out if one classifier fails to iterate } } if (failure) { break; } } catch (Exception e) { System.out.println("Classifiers could not be generated."); e.printStackTrace(); } } trainingSets = null; testSets = null; data = null; // Build classifier based on identified number of iterations m_IterativeClassifier.initializeClassifier(origData); int i = 0; while (i++ < m_bestNumIts && m_IterativeClassifier.next()) { } ; m_IterativeClassifier.done(); // Shut down thread pool pool.shutdown(); } /** * Returns the class distribution for an instance. */ @Override public double[] distributionForInstance(Instance inst) throws Exception { // Does the metric produce thresholds that need to be applied? if (m_thresholds != null) { double[] dist = m_IterativeClassifier.distributionForInstance(inst); double[] newDist = new double[dist.length]; for (int i = 0; i < dist.length; i++) { if (dist[i] >= m_thresholds[i]) { newDist[i] = 1.0; } } Utils.normalize(newDist); // Could have multiple 1.0 entries return newDist; } else { return m_IterativeClassifier.distributionForInstance(inst); } } /** * Returns a string describing the classifier. */ @Override public String toString() { if (m_IterativeClassifier == null) { return "No classifier built yet."; } else { StringBuffer sb = new StringBuffer(); sb.append("Best value found: " + m_bestResult + "\n"); sb.append("Best number of iterations found: " + m_bestNumIts + "\n\n"); if (m_thresholds != null) { sb.append("Thresholds found: "); for (int i = 0; i < m_thresholds.length; i++) { sb.append(m_thresholds[i] + " "); } } sb.append("\n\n"); sb.append(m_IterativeClassifier.toString()); return sb.toString(); } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration




© 2015 - 2025 Weber Informatics LLC | Privacy Policy