All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.rules.part.ClassifierDecList Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    ClassifierDecList.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.rules.part;

import java.io.Serializable;

import weka.classifiers.trees.j48.ClassifierSplitModel;
import weka.classifiers.trees.j48.Distribution;
import weka.classifiers.trees.j48.EntropySplitCrit;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.j48.NoSplit;
import weka.core.ContingencyTables;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 * Class for handling a rule (partial tree) for a decision list.
 * 
 * @author Eibe Frank ([email protected])
 * @version $Revision: 10153 $
 */
public class ClassifierDecList implements Serializable, RevisionHandler {

  /** for serialization */
  private static final long serialVersionUID = 7284358349711992497L;

  /** Minimum number of objects */
  protected int m_minNumObj;

  /** To compute the entropy. */
  protected static EntropySplitCrit m_splitCrit = new EntropySplitCrit();

  /** The model selection method. */
  protected ModelSelection m_toSelectModel;

  /** Local model at node. */
  protected ClassifierSplitModel m_localModel;

  /** References to sons. */
  protected ClassifierDecList[] m_sons;

  /** True if node is leaf. */
  protected boolean m_isLeaf;

  /** True if node is empty. */
  protected boolean m_isEmpty;

  /** The training instances. */
  protected Instances m_train;

  /** The pruning instances. */
  protected Distribution m_test;

  /** Which son to expand? */
  protected int indeX;

  /**
   * Constructor - just calls constructor of class DecList.
   */
  public ClassifierDecList(ModelSelection toSelectLocModel, int minNum) {

    m_toSelectModel = toSelectLocModel;
    m_minNumObj = minNum;
  }

  /**
   * Method for building a pruned partial tree.
   * 
   * @exception Exception if something goes wrong
   */
  public void buildRule(Instances data) throws Exception {

    buildDecList(data, false);

    cleanup(new Instances(data, 0));
  }

  /**
   * Builds the partial tree without hold out set.
   * 
   * @exception Exception if something goes wrong
   */
  public void buildDecList(Instances data, boolean leaf) throws Exception {

    Instances[] localInstances;
    int ind;
    int i, j;
    double sumOfWeights;
    NoSplit noSplit;

    m_train = null;
    m_test = null;
    m_isLeaf = false;
    m_isEmpty = false;
    m_sons = null;
    indeX = 0;
    sumOfWeights = data.sumOfWeights();
    noSplit = new NoSplit(new Distribution(data));
    if (leaf) {
      m_localModel = noSplit;
    } else {
      m_localModel = m_toSelectModel.selectModel(data);
    }
    if (m_localModel.numSubsets() > 1) {
      localInstances = m_localModel.split(data);
      data = null;
      m_sons = new ClassifierDecList[m_localModel.numSubsets()];
      i = 0;
      do {
        i++;
        ind = chooseIndex();
        if (ind == -1) {
          for (j = 0; j < m_sons.length; j++) {
            if (m_sons[j] == null) {
              m_sons[j] = getNewDecList(localInstances[j], true);
            }
          }
          if (i < 2) {
            m_localModel = noSplit;
            m_isLeaf = true;
            m_sons = null;
            if (Utils.eq(sumOfWeights, 0)) {
              m_isEmpty = true;
            }
            return;
          }
          ind = 0;
          break;
        } else {
          m_sons[ind] = getNewDecList(localInstances[ind], false);
        }
      } while ((i < m_sons.length) && (m_sons[ind].m_isLeaf));

      // Choose rule
      indeX = chooseLastIndex();
    } else {
      m_isLeaf = true;
      if (Utils.eq(sumOfWeights, 0)) {
        m_isEmpty = true;
      }
    }
  }

  /**
   * Classifies an instance.
   * 
   * @exception Exception if something goes wrong
   */
  public double classifyInstance(Instance instance) throws Exception {

    double maxProb = -1;
    double currentProb;
    int maxIndex = 0;
    int j;

    for (j = 0; j < instance.numClasses(); j++) {
      currentProb = getProbs(j, instance, 1);
      if (Utils.gr(currentProb, maxProb)) {
        maxIndex = j;
        maxProb = currentProb;
      }
    }
    if (Utils.eq(maxProb, 0)) {
      return -1.0;
    } else {
      return maxIndex;
    }
  }

  /**
   * Returns class probabilities for a weighted instance.
   * 
   * @exception Exception if something goes wrong
   */
  public final double[] distributionForInstance(Instance instance)
    throws Exception {

    double[] doubles = new double[instance.numClasses()];

    for (int i = 0; i < doubles.length; i++) {
      doubles[i] = getProbs(i, instance, 1);
    }

    return doubles;
  }

  /**
   * Returns the weight a rule assigns to an instance.
   * 
   * @exception Exception if something goes wrong
   */
  public double weight(Instance instance) throws Exception {

    int subset;

    if (m_isLeaf) {
      return 1;
    }
    subset = m_localModel.whichSubset(instance);
    if (subset == -1) {
      return (m_localModel.weights(instance))[indeX]
        * m_sons[indeX].weight(instance);
    }
    if (subset == indeX) {
      return m_sons[indeX].weight(instance);
    }
    return 0;
  }

  /**
   * Cleanup in order to save memory.
   */
  public final void cleanup(Instances justHeaderInfo) {

    m_train = justHeaderInfo;
    m_test = null;
    if (!m_isLeaf) {
      for (ClassifierDecList m_son : m_sons) {
        if (m_son != null) {
          m_son.cleanup(justHeaderInfo);
        }
      }
    }
  }

  /**
   * Prints rules.
   */
  @Override
  public String toString() {

    try {
      StringBuffer text;

      text = new StringBuffer();
      if (m_isLeaf) {
        text.append(": ");
        text.append(m_localModel.dumpLabel(0, m_train) + "\n");
      } else {
        dumpDecList(text);
        // dumpTree(0,text);
      }
      return text.toString();
    } catch (Exception e) {
      return "Can't print rule.";
    }
  }

  /**
   * Returns a newly created tree.
   * 
   * @exception Exception if something goes wrong
   */
  protected ClassifierDecList getNewDecList(Instances train, boolean leaf)
    throws Exception {

    ClassifierDecList newDecList = new ClassifierDecList(m_toSelectModel,
      m_minNumObj);
    newDecList.buildDecList(train, leaf);

    return newDecList;
  }

  /**
   * Method for choosing a subset to expand.
   */
  public final int chooseIndex() {

    int minIndex = -1;
    double estimated, min = Double.MAX_VALUE;
    int i, j;

    for (i = 0; i < m_sons.length; i++) {
      if (son(i) == null) {
        if (Utils.sm(localModel().distribution().perBag(i), m_minNumObj)) {
          estimated = Double.MAX_VALUE;
        } else {
          estimated = 0;
          for (j = 0; j < localModel().distribution().numClasses(); j++) {
            estimated -= m_splitCrit.lnFunc(localModel().distribution()
              .perClassPerBag(i, j));
          }
          estimated += m_splitCrit
            .lnFunc(localModel().distribution().perBag(i));
          estimated /= (localModel().distribution().perBag(i) * ContingencyTables.log2);
        }
        if (Utils.smOrEq(estimated, 0)) {
          return i;
        }
        if (Utils.sm(estimated, min)) {
          min = estimated;
          minIndex = i;
        }
      }
    }

    return minIndex;
  }

  /**
   * Choose last index (ie. choose rule).
   */
  public final int chooseLastIndex() {

    int minIndex = 0;
    double estimated, min = Double.MAX_VALUE;

    if (!m_isLeaf) {
      for (int i = 0; i < m_sons.length; i++) {
        if (son(i) != null) {
          if (Utils.grOrEq(localModel().distribution().perBag(i), m_minNumObj)) {
            estimated = son(i).getSizeOfBranch();
            if (Utils.sm(estimated, min)) {
              min = estimated;
              minIndex = i;
            }
          }
        }
      }
    }

    return minIndex;
  }

  /**
   * Returns the number of instances covered by a branch
   */
  protected double getSizeOfBranch() {

    if (m_isLeaf) {
      return -localModel().distribution().total();
    } else {
      return son(indeX).getSizeOfBranch();
    }
  }

  /**
   * Help method for printing tree structure.
   */
  private void dumpDecList(StringBuffer text) throws Exception {

    text.append(m_localModel.leftSide(m_train));
    text.append(m_localModel.rightSide(indeX, m_train));
    if (m_sons[indeX].m_isLeaf) {
      text.append(": ");
      text.append(m_localModel.dumpLabel(indeX, m_train) + "\n");
    } else {
      text.append(" AND\n");
      m_sons[indeX].dumpDecList(text);
    }
  }

  /**
   * Help method for computing class probabilities of a given instance.
   * 
   * @exception Exception Exception if something goes wrong
   */
  private double getProbs(int classIndex, Instance instance, double weight)
    throws Exception {

    double[] weights;
    int treeIndex;

    if (m_isLeaf) {
      return weight * localModel().classProb(classIndex, instance, -1);
    } else {
      treeIndex = localModel().whichSubset(instance);
      if (treeIndex == -1) {
        weights = localModel().weights(instance);
        return son(indeX).getProbs(classIndex, instance,
          weights[indeX] * weight);
      } else {
        if (treeIndex == indeX) {
          return son(indeX).getProbs(classIndex, instance, weight);
        } else {
          return 0;
        }
      }
    }
  }

  /**
   * Method just exists to make program easier to read.
   */
  protected ClassifierSplitModel localModel() {

    return m_localModel;
  }

  /**
   * Method just exists to make program easier to read.
   */
  protected ClassifierDecList son(int index) {

    return m_sons[index];
  }

  /**
   * Returns the revision string.
   * 
   * @return the revision
   */
  @Override
  public String getRevision() {
    return RevisionUtils.extract("$Revision: 10153 $");
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy