weka.classifiers.trees.j48.C45PruneableClassifierTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* C45PruneableClassifierTree.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for handling a tree structure that can
* be pruned using C4.5 procedures.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 14534 $
*/
public class C45PruneableClassifierTree
extends ClassifierTree {
/** for serialization */
static final long serialVersionUID = -4813820170260388194L;
/** True if the tree is to be pruned. */
protected boolean m_pruneTheTree = false;
/** True if the tree is to be collapsed. */
protected boolean m_collapseTheTree = false;
/** The confidence factor for pruning. */
protected float m_CF = 0.25f;
/** Is subtree raising to be performed? */
protected boolean m_subtreeRaising = true;
/** Cleanup after the tree has been built. */
protected boolean m_cleanup = true;
/**
* Constructor for pruneable tree structure. Stores reference
* to associated training data at each node.
*
* @param toSelectLocModel selection method for local splitting model
* @param pruneTree true if the tree is to be pruned
* @param cf the confidence factor for pruning
* @param raiseTree
* @param cleanup
* @throws Exception if something goes wrong
*/
public C45PruneableClassifierTree(ModelSelection toSelectLocModel,
boolean pruneTree,float cf,
boolean raiseTree,
boolean cleanup,
boolean collapseTree)
throws Exception {
super(toSelectLocModel);
m_pruneTheTree = pruneTree;
m_CF = cf;
m_subtreeRaising = raiseTree;
m_cleanup = cleanup;
m_collapseTheTree = collapseTree;
}
/**
* Method for building a pruneable classifier tree.
*
* @param data the data for building the tree
* @throws Exception if something goes wrong
*/
public void buildClassifier(Instances data) throws Exception {
// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();
buildTree(data, m_subtreeRaising || !m_cleanup);
if (m_collapseTheTree) {
collapse();
}
if (m_pruneTheTree) {
prune();
}
if (m_cleanup) {
cleanup(new Instances(data, 0));
}
}
/**
* Collapses a tree to a node if training error doesn't increase.
*/
public final void collapse(){
double errorsOfSubtree;
double errorsOfTree;
int i;
if (!m_isLeaf){
errorsOfSubtree = getTrainingErrors();
errorsOfTree = localModel().distribution().numIncorrect();
if (errorsOfSubtree >= errorsOfTree-1E-3){
// Free adjacent trees
m_sons = null;
m_isLeaf = true;
// Get NoSplit Model for tree.
m_localModel = new NoSplit(localModel().distribution());
}else
for (i=0;i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy