All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.lmt.LogisticBase Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    LogisticBase.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees.lmt;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Evaluation;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 * Base/helper class for building logistic regression models with the LogitBoost
 * algorithm. Used for building logistic model trees
 * (weka.classifiers.trees.lmt.LMT) and standalone logistic regression
 * (weka.classifiers.functions.SimpleLogistic).
 * 
 
 * Valid options are:
 * 

* *

 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * @author Niels Landwehr * @author Marc Sumner * @version $Revision: 14203 $ */ public class LogisticBase extends AbstractClassifier implements WeightedInstancesHandler { /** for serialization */ static final long serialVersionUID = 168765678097825064L; /** Header-only version of the numeric version of the training data */ protected Instances m_numericDataHeader; /** * Numeric version of the training data. Original class is replaced by a * numeric pseudo-class. */ protected Instances m_numericData; /** Training data */ protected Instances m_train; /** Use cross-validation to determine best number of LogitBoost iterations ? */ protected boolean m_useCrossValidation; /** Use error on probabilities for stopping criterion of LogitBoost? */ protected boolean m_errorOnProbabilities; /** * Use fixed number of iterations for LogitBoost? (if negative, cross-validate * number of iterations) */ protected int m_fixedNumIterations; /** * Use heuristic to stop performing LogitBoost iterations earlier? If enabled, * LogitBoost is stopped if the current (local) minimum of the error on a test * set as a function of the number of iterations has not changed for * m_heuristicStop iterations. */ protected int m_heuristicStop = 50; /** The number of LogitBoost iterations performed. */ protected int m_numRegressions = 0; /** The maximum number of LogitBoost iterations */ protected int m_maxIterations; /** The number of different classes */ protected int m_numClasses; /** Array holding the simple regression functions fit by LogitBoost */ protected SimpleLinearRegression[][] m_regressions; /** Number of folds for cross-validating number of LogitBoost iterations */ protected static int m_numFoldsBoosting = 5; /** Threshold on the Z-value for LogitBoost */ protected static final double Z_MAX = 3; /** If true, the AIC is used to choose the best iteration */ private boolean m_useAIC = false; /** Effective number of parameters used for AIC / BIC automatic stopping */ protected double m_numParameters = 0; /** * Threshold for trimming weights. Instances with a weight lower than this (as * a percentage of total weights) are not included in the regression fit. **/ protected double m_weightTrimBeta = 0; /** * Constructor that creates LogisticBase object with standard options. */ public LogisticBase() { m_fixedNumIterations = -1; m_useCrossValidation = true; m_errorOnProbabilities = false; m_maxIterations = 500; m_useAIC = false; m_numParameters = 0; m_numDecimalPlaces = 2; } /** * Constructor to create LogisticBase object. * * @param numBoostingIterations fixed number of iterations for LogitBoost (if * negative, use cross-validation or stopping criterion on the * training data). * @param useCrossValidation cross-validate number of LogitBoost iterations * (if false, use stopping criterion on the training data). * @param errorOnProbabilities if true, use error on probabilities instead of * misclassification for stopping criterion of LogitBoost */ public LogisticBase(int numBoostingIterations, boolean useCrossValidation, boolean errorOnProbabilities) { m_fixedNumIterations = numBoostingIterations; m_useCrossValidation = useCrossValidation; m_errorOnProbabilities = errorOnProbabilities; m_maxIterations = 500; m_useAIC = false; m_numParameters = 0; m_numDecimalPlaces = 2; } /** * Builds the logistic regression model usiing LogitBoost. * * @param data the training data * @throws Exception if something goes wrong */ @Override public void buildClassifier(Instances data) throws Exception { m_train = new Instances(data); m_numClasses = m_train.numClasses(); // get numeric version of the training data (class variable replaced by // numeric pseudo-class) m_numericData = getNumericData(m_train); // init the array of simple regression functions m_regressions = initRegressions(); m_numRegressions = 0; if (m_fixedNumIterations > 0) { // run LogitBoost for fixed number of iterations performBoosting(m_fixedNumIterations); } else if (m_useAIC) { // Marc had this after the test for // m_useCrossValidation. Changed by Eibe. // run LogitBoost using information criterion for stopping performBoostingInfCriterion(); } else if (m_useCrossValidation) { // cross-validate number of LogitBoost iterations performBoostingCV(); } else { // run LogitBoost with number of iterations that minimizes error on the // training set performBoosting(); } // clean up cleanup(); } /** * Runs LogitBoost, determining the best number of iterations by * cross-validation. * * @throws Exception if something goes wrong */ protected void performBoostingCV() throws Exception { // completed iteration keeps track of the number of iterations that have // been // performed in every fold (some might stop earlier than others). // Best iteration is selected only from these. int completedIterations = m_maxIterations; Instances allData = new Instances(m_train); allData.stratify(m_numFoldsBoosting); double[] error = new double[m_maxIterations + 1]; SimpleLinearRegression[][] backup = m_regressions; for (int i = 0; i < m_numFoldsBoosting; i++) { // split into training/test data in fold Instances train = allData.trainCV(m_numFoldsBoosting, i); Instances test = allData.testCV(m_numFoldsBoosting, i); // initialize LogitBoost m_numRegressions = 0; m_regressions = copyRegressions(backup); // run LogitBoost iterations int iterations = performBoosting(train, test, error, completedIterations); if (iterations < completedIterations) { completedIterations = iterations; } } // determine iteration with minimum error over the folds int bestIteration = getBestIteration(error, completedIterations); // rebuild model on all of the training data m_numRegressions = 0; m_regressions = backup; performBoosting(bestIteration); } /** * Deep copies the given array of simple linear regression functions. * * @param a the array to copy * * @return the new array */ protected SimpleLinearRegression[][] copyRegressions( SimpleLinearRegression[][] a) throws Exception { SimpleLinearRegression[][] result = initRegressions(); for (int i = 0; i < a.length; i++) { for (int j = 0; j < a[i].length; j++) { if (j != m_numericDataHeader.classIndex()) { result[i][j].addModel(a[i][j]); } } } return result; } /** * Runs LogitBoost, determining the best number of iterations by an * information criterion (currently AIC). */ protected void performBoostingInfCriterion() throws Exception { double bestCriterion = Double.MAX_VALUE; int bestIteration = 0; int noMin = 0; // Variable to keep track of criterion values (AIC) double criterionValue = Double.MAX_VALUE; // initialize Ys/Fs/ps double[][] trainYs = getYs(m_train); double[][] trainFs = getFs(m_numericData); double[][] probs = getProbs(trainFs); int iteration = 0; while (iteration < m_maxIterations) { // perform single LogitBoost iteration boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); if (foundAttribute) { iteration++; m_numRegressions = iteration; } else { // could not fit simple linear regression: stop LogitBoost break; } double numberOfAttributes = m_numParameters + iteration; // Fill criterion array values criterionValue = 2.0 * negativeLogLikelihood(trainYs, probs) + 2.0 * numberOfAttributes; // heuristic: stop LogitBoost if the current minimum has not changed for // iterations if (noMin > m_heuristicStop) { break; } if (criterionValue < bestCriterion) { bestCriterion = criterionValue; bestIteration = iteration; noMin = 0; } else { noMin++; } } m_numRegressions = 0; m_regressions = initRegressions(); performBoosting(bestIteration); } /** * Runs LogitBoost on a training set and monitors the error on a test set. * Used for running one fold when cross-validating the number of LogitBoost * iterations. * * @param train the training set * @param test the test set * @param error array to hold the logged error values * @param maxIterations the maximum number of LogitBoost iterations to run * @return the number of completed LogitBoost iterations (can be smaller than * maxIterations if the heuristic for early stopping is active or * there is a problem while fitting the regressions in LogitBoost). * @throws Exception if something goes wrong */ protected int performBoosting(Instances train, Instances test, double[] error, int maxIterations) throws Exception { // get numeric version of the (sub)set of training instances Instances numericTrain = getNumericData(train); // initialize Ys/Fs/ps double[][] trainYs = getYs(train); double[][] trainFs = getFs(numericTrain); double[][] probs = getProbs(trainFs); int iteration = 0; int noMin = 0; double lastMin = Double.MAX_VALUE; if (m_errorOnProbabilities) { error[0] += getMeanAbsoluteError(test); } else { error[0] += getErrorRate(test); } while (iteration < maxIterations) { // perform single LogitBoost iteration boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, numericTrain); if (foundAttribute) { iteration++; m_numRegressions = iteration; } else { // could not fit simple linear regression: stop LogitBoost break; } if (m_errorOnProbabilities) { error[iteration] += getMeanAbsoluteError(test); } else { error[iteration] += getErrorRate(test); } // heuristic: stop LogitBoost if the current minimum has not changed for // iterations if (noMin > m_heuristicStop) { break; } if (error[iteration] < lastMin) { lastMin = error[iteration]; noMin = 0; } else { noMin++; } } return iteration; } /** * Runs LogitBoost with a fixed number of iterations. * * @param numIterations the number of iterations to run * @throws Exception if something goes wrong */ protected void performBoosting(int numIterations) throws Exception { // initialize Ys/Fs/ps double[][] trainYs = getYs(m_train); double[][] trainFs = getFs(m_numericData); double[][] probs = getProbs(trainFs); int iteration = 0; // run iterations while (iteration < numIterations) { boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); if (foundAttribute) { iteration++; } else { break; } } m_numRegressions = iteration; } /** * Runs LogitBoost using the stopping criterion on the training set. The * number of iterations is used that gives the lowest error on the training * set, either misclassification or error on probabilities (depending on the * errorOnProbabilities option). * * @throws Exception if something goes wrong */ protected void performBoosting() throws Exception { // initialize Ys/Fs/ps double[][] trainYs = getYs(m_train); double[][] trainFs = getFs(m_numericData); double[][] probs = getProbs(trainFs); int iteration = 0; double[] trainErrors = new double[m_maxIterations + 1]; trainErrors[0] = getErrorRate(m_train); int noMin = 0; double lastMin = Double.MAX_VALUE; while (iteration < m_maxIterations) { boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); if (foundAttribute) { iteration++; m_numRegressions = iteration; } else { // could not fit simple regression break; } trainErrors[iteration] = getErrorRate(m_train); // heuristic: stop LogitBoost if the current minimum has not changed for // iterations if (noMin > m_heuristicStop) { break; } if (trainErrors[iteration] < lastMin) { lastMin = trainErrors[iteration]; noMin = 0; } else { noMin++; } } // find iteration with best error int bestIteration = getBestIteration(trainErrors, iteration); m_numRegressions = 0; m_regressions = initRegressions(); performBoosting(bestIteration); } /** * Returns the misclassification error of the current model on a set of * instances. * * @param data the set of instances * @return the error rate * @throws Exception if something goes wrong */ protected double getErrorRate(Instances data) throws Exception { Evaluation eval = new Evaluation(data); eval.evaluateModel(this, data); return eval.errorRate(); } /** * Returns the error of the probability estimates for the current model on a * set of instances. * * @param data the set of instances * @return the error * @throws Exception if something goes wrong */ protected double getMeanAbsoluteError(Instances data) throws Exception { Evaluation eval = new Evaluation(data); eval.evaluateModel(this, data); return eval.meanAbsoluteError(); } /** * Helper function to find the minimum in an array of error values. * * @param errors an array containing errors * @param maxIteration the maximum of iterations * @return the minimum */ protected int getBestIteration(double[] errors, int maxIteration) { double bestError = errors[0]; int bestIteration = 0; for (int i = 1; i <= maxIteration; i++) { if (errors[i] < bestError) { bestError = errors[i]; bestIteration = i; } } return bestIteration; } /** * Performs a single iteration of LogitBoost, and updates the model * accordingly. A simple regression function is fit to the response and added * to the m_regressions array. * * @param iteration the current iteration * @param trainYs the y-values (see description of LogitBoost) for the model * trained so far * @param trainFs the F-values (see description of LogitBoost) for the model * trained so far * @param probs the p-values (see description of LogitBoost) for the model * trained so far * @param trainNumeric numeric version of the training data * @return returns true if iteration performed successfully, false if no * simple regression function could be fitted. * @throws Exception if something goes wrong */ protected boolean performIteration(int iteration, double[][] trainYs, double[][] trainFs, double[][] probs, Instances trainNumeric) throws Exception { SimpleLinearRegression[] linearRegressionForEachClass = new SimpleLinearRegression[m_numClasses]; // Store weights double[] oldWeights = new double[trainNumeric.numInstances()]; for (int i = 0; i < oldWeights.length; i++) { oldWeights[i] = trainNumeric.instance(i).weight(); } for (int j = 0; j < m_numClasses; j++) { // Keep track of sum of weights double weightSum = 0.0; for (int i = 0; i < trainNumeric.numInstances(); i++) { // compute response and weight double p = probs[i][j]; double actual = trainYs[i][j]; double z = getZ(actual, p); double w = (actual - p) / z; // set values for instance Instance current = trainNumeric.instance(i); current.setValue(trainNumeric.classIndex(), z); current.setWeight(oldWeights[i] * w); weightSum += current.weight(); } Instances instancesCopy = trainNumeric; if (weightSum > 0) { // Only the (1-beta)th quantile of instances are sent to the base // classifier if (m_weightTrimBeta > 0) { // Need to make an empty dataset instancesCopy = new Instances(trainNumeric, trainNumeric.numInstances()); // Get weights double[] weights = new double[oldWeights.length]; for (int i = 0; i < oldWeights.length; i++) { weights[i] = trainNumeric.instance(i).weight(); } double weightPercentage = 0.0; int[] weightsOrder = Utils.sort(weights); for (int i = weightsOrder.length - 1; (i >= 0) && (weightPercentage < (1 - m_weightTrimBeta)); i--) { instancesCopy.add(trainNumeric.instance(weightsOrder[i])); weightPercentage += (weights[weightsOrder[i]] / weightSum); } // Update the sum of weights weightSum = instancesCopy.sumOfWeights(); } // Scale the weights double multiplier = instancesCopy.numInstances() / weightSum; for (Instance current : instancesCopy) { current.setWeight(current.weight() * multiplier); } } // fit simple regression function linearRegressionForEachClass[j] = new SimpleLinearRegression(); linearRegressionForEachClass[j].buildClassifier(instancesCopy); boolean foundAttribute = linearRegressionForEachClass[j] .foundUsefulAttribute(); if (!foundAttribute) { // could not fit simple regression function // Restore weights for (int i = 0; i < oldWeights.length; i++) { trainNumeric.instance(i).setWeight(oldWeights[i]); } return false; } } // Add each linear regression model to the sum for (int i = 0; i < m_numClasses; i++) { m_regressions[i][linearRegressionForEachClass[i].getAttributeIndex()] .addModel(linearRegressionForEachClass[i]); } // Evaluate / increment trainFs from the classifier for (int i = 0; i < trainFs.length; i++) { double[] pred = new double[m_numClasses]; double predSum = 0; for (int j = 0; j < m_numClasses; j++) { pred[j] = linearRegressionForEachClass[j].classifyInstance(trainNumeric .instance(i)); predSum += pred[j]; } predSum /= m_numClasses; for (int j = 0; j < m_numClasses; j++) { trainFs[i][j] += (pred[j] - predSum) * (m_numClasses - 1) / m_numClasses; } } // Compute the current probability estimates for (int i = 0; i < trainYs.length; i++) { probs[i] = probs(trainFs[i]); } // Restore weights for (int i = 0; i < oldWeights.length; i++) { trainNumeric.instance(i).setWeight(oldWeights[i]); } return true; } /** * Helper function to initialize m_regressions. * * @return the generated classifiers */ protected SimpleLinearRegression[][] initRegressions() throws Exception { SimpleLinearRegression[][] classifiers = new SimpleLinearRegression[m_numClasses][m_numericDataHeader .numAttributes()]; for (int j = 0; j < m_numClasses; j++) { for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { if (i != m_numericDataHeader.classIndex()) { classifiers[j][i] = new SimpleLinearRegression(i, 0, 0); } } } return classifiers; } /** * Private class implementing a DenseInstance with an unsafe setValue() * operation. */ private class UnsafeInstance extends DenseInstance { /** * Added ID to avoid warning */ private static final long serialVersionUID = 3210674215118962869L; /** * The constructor. * * @param vals The instance whose value we want to copy. */ public UnsafeInstance(Instance vals) { super(vals.numAttributes()); for (int i = 0; i < vals.numAttributes(); i++) { m_AttValues[i] = vals.value(i); } m_Weight = vals.weight(); } /** * Unsafe setValue() method. */ @Override public void setValue(int attIndex, double value) { m_AttValues[attIndex] = value; } /** * We need a copy method that doesn't do anything... */ @Override public Object copy() { return this; } } /** * Converts training data to numeric version. The class variable is replaced * by a pseudo-class used by LogitBoost. * * @param data the data to convert * @return the converted data * @throws Exception if something goes wrong */ protected Instances getNumericData(Instances data) throws Exception { if (m_numericDataHeader == null) { m_numericDataHeader = new Instances(data, 0); int classIndex = m_numericDataHeader.classIndex(); m_numericDataHeader.setClassIndex(-1); m_numericDataHeader.replaceAttributeAt(new Attribute("'pseudo class'"), classIndex); m_numericDataHeader.setClassIndex(classIndex); } Instances numericData = new Instances(m_numericDataHeader, data.numInstances()); for (Instance inst : data) { numericData.add(new UnsafeInstance(inst)); } return numericData; } /** * Computes the LogitBoost response variable from y/p values (actual/estimated * class probabilities). * * @param actual the actual class probability * @param p the estimated class probability * @return the LogitBoost response */ protected double getZ(double actual, double p) { double z; if (actual == 1) { z = 1.0 / p; if (z > Z_MAX) { // threshold z = Z_MAX; } } else { z = -1.0 / (1.0 - p); if (z < -Z_MAX) { // threshold z = -Z_MAX; } } return z; } /** * Computes the LogitBoost response for an array of y/p values * (actual/estimated class probabilities). * * @param dataYs the actual class probabilities * @param probs the estimated class probabilities * @return the LogitBoost response */ protected double[][] getZs(double[][] probs, double[][] dataYs) { double[][] dataZs = new double[probs.length][m_numClasses]; for (int j = 0; j < m_numClasses; j++) { for (int i = 0; i < probs.length; i++) { dataZs[i][j] = getZ(dataYs[i][j], probs[i][j]); } } return dataZs; } /** * Computes the LogitBoost weights from an array of y/p values * (actual/estimated class probabilities). * * @param dataYs the actual class probabilities * @param probs the estimated class probabilities * @return the LogitBoost weights */ protected double[][] getWs(double[][] probs, double[][] dataYs) { double[][] dataWs = new double[probs.length][m_numClasses]; for (int j = 0; j < m_numClasses; j++) { for (int i = 0; i < probs.length; i++) { double z = getZ(dataYs[i][j], probs[i][j]); dataWs[i][j] = (dataYs[i][j] - probs[i][j]) / z; } } return dataWs; } /** * Computes the p-values (probabilities for the classes) from the F-values of * the logistic model. * * @param Fs the F-values * @return the p-values */ protected double[] probs(double[] Fs) { double maxF = -Double.MAX_VALUE; for (double element : Fs) { if (element > maxF) { maxF = element; } } double sum = 0; double[] probs = new double[Fs.length]; for (int i = 0; i < Fs.length; i++) { probs[i] = Math.exp(Fs[i] - maxF); sum += probs[i]; } Utils.normalize(probs, sum); return probs; } /** * Computes the Y-values (actual class probabilities) for a set of instances. * * @param data the data to compute the Y-values from * @return the Y-values */ protected double[][] getYs(Instances data) { double[][] dataYs = new double[data.numInstances()][m_numClasses]; for (int j = 0; j < m_numClasses; j++) { for (int k = 0; k < data.numInstances(); k++) { dataYs[k][j] = (data.instance(k).classValue() == j) ? 1.0 : 0.0; } } return dataYs; } /** * Computes the F-values for a single instance. * * @param instance the instance to compute the F-values for * @return the F-values * @throws Exception if something goes wrong */ protected double[] getFs(Instance instance) throws Exception { double[] pred = new double[m_numClasses]; double[] instanceFs = new double[m_numClasses]; // add up the predictions from the simple regression functions for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { if (i != m_numericDataHeader.classIndex()) { double predSum = 0; for (int j = 0; j < m_numClasses; j++) { pred[j] = m_regressions[j][i].classifyInstance(instance); predSum += pred[j]; } predSum /= m_numClasses; for (int j = 0; j < m_numClasses; j++) { instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1) / m_numClasses; } } } return instanceFs; } /** * Computes the F-values for a set of instances. * * @param data the data to work on * @return the F-values * @throws Exception if something goes wrong */ protected double[][] getFs(Instances data) throws Exception { double[][] dataFs = new double[data.numInstances()][]; for (int k = 0; k < data.numInstances(); k++) { dataFs[k] = getFs(data.instance(k)); } return dataFs; } /** * Computes the p-values (probabilities for the different classes) from the * F-values for a set of instances. * * @param dataFs the F-values * @return the p-values */ protected double[][] getProbs(double[][] dataFs) { int numInstances = dataFs.length; double[][] probs = new double[numInstances][]; for (int k = 0; k < numInstances; k++) { probs[k] = probs(dataFs[k]); } return probs; } /** * Returns the negative loglikelihood of the Y-values (actual class * probabilities) given the p-values (current probability estimates). * * @param dataYs the Y-values * @param probs the p-values * @return the likelihood */ protected double negativeLogLikelihood(double[][] dataYs, double[][] probs) { double logLikelihood = 0; for (int i = 0; i < dataYs.length; i++) { for (int j = 0; j < m_numClasses; j++) { if (dataYs[i][j] == 1.0) { logLikelihood -= Math.log(probs[i][j]); } } } return logLikelihood;// / (double)dataYs.length; } /** * Returns an array of the indices of the attributes used in the logistic * model. The first dimension is the class, the second dimension holds a list * of attribute indices. Attribute indices start at zero. * * @return the array of attribute indices */ public int[][] getUsedAttributes() { int[][] usedAttributes = new int[m_numClasses][]; // first extract coefficients double[][] coefficients = getCoefficients(); for (int j = 0; j < m_numClasses; j++) { // boolean array indicating if attribute used boolean[] attributes = new boolean[m_numericDataHeader.numAttributes()]; for (int i = 0; i < attributes.length; i++) { // attribute used if coefficient > 0 if (!Utils.eq(coefficients[j][i + 1], 0)) { attributes[i] = true; } } int numAttributes = 0; for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { if (attributes[i]) { numAttributes++; } } // "collect" all attributes into array of indices int[] usedAttributesClass = new int[numAttributes]; int count = 0; for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { if (attributes[i]) { usedAttributesClass[count] = i; count++; } } usedAttributes[j] = usedAttributesClass; } return usedAttributes; } /** * The number of LogitBoost iterations performed (= the number of simple * regression functions fit). * * @return the number of LogitBoost iterations performed */ public int getNumRegressions() { return m_numRegressions; } /** * Get the value of weightTrimBeta. * * @return Value of weightTrimBeta. */ public double getWeightTrimBeta() { return m_weightTrimBeta; } /** * Get the value of useAIC. * * @return Value of useAIC. */ public boolean getUseAIC() { return m_useAIC; } /** * Sets the parameter "maxIterations". * * @param maxIterations the maximum iterations */ public void setMaxIterations(int maxIterations) { m_maxIterations = maxIterations; } /** * Sets the option "heuristicStop". * * @param heuristicStop the heuristic stop to use */ public void setHeuristicStop(int heuristicStop) { m_heuristicStop = heuristicStop; } /** * Sets the option "weightTrimBeta". */ public void setWeightTrimBeta(double w) { m_weightTrimBeta = w; } /** * Set the value of useAIC. * * @param c Value to assign to useAIC. */ public void setUseAIC(boolean c) { m_useAIC = c; } /** * Returns the maxIterations parameter. * * @return the maximum iteration */ public int getMaxIterations() { return m_maxIterations; } /** * Returns an array holding the coefficients of the logistic model. First * dimension is the class, the second one holds a list of coefficients. At * position zero, the constant term of the model is stored, then, the * coefficients for the attributes in ascending order. * * @return the array of coefficients */ protected double[][] getCoefficients() { double[][] coefficients = new double[m_numClasses][m_numericDataHeader .numAttributes() + 1]; for (int j = 0; j < m_numClasses; j++) { // go through simple regression functions and add their coefficient to the // coefficient of // the attribute they are built on. for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { if (i != m_numericDataHeader.classIndex()) { double slope = m_regressions[j][i].getSlope(); double intercept = m_regressions[j][i].getIntercept(); int attribute = m_regressions[j][i].getAttributeIndex(); coefficients[j][0] += intercept; coefficients[j][attribute + 1] += slope; } } } // Need to multiply all coefficients by (J-1) / J for (int j = 0; j < coefficients.length; j++) { for (int i = 0; i < coefficients[0].length; i++) { coefficients[j][i] *= (double) (m_numClasses - 1) / (double) m_numClasses; } } return coefficients; } /** * Returns the fraction of all attributes in the data that are used in the * logistic model (in percent). An attribute is used in the model if it is * used in any of the models for the different classes. * * @return the fraction of all attributes that are used */ public double percentAttributesUsed() { boolean[] attributes = new boolean[m_numericDataHeader.numAttributes()]; double[][] coefficients = getCoefficients(); for (int j = 0; j < m_numClasses; j++) { for (int i = 1; i < m_numericDataHeader.numAttributes() + 1; i++) { // attribute used if it is used in any class, note coefficients are // shifted by one (because // of constant term). if (!Utils.eq(coefficients[j][i], 0)) { attributes[i - 1] = true; } } } // count number of used attributes (without the class attribute) double count = 0; for (boolean attribute : attributes) { if (attribute) { count++; } } return count / (m_numericDataHeader.numAttributes() - 1) * 100.0; } /** * Returns a description of the logistic model (i.e., attributes and * coefficients). * * @return the description of the model */ @Override public String toString() { StringBuffer s = new StringBuffer(); // get used attributes int[][] attributes = getUsedAttributes(); // get coefficients double[][] coefficients = getCoefficients(); for (int j = 0; j < m_numClasses; j++) { s.append("\nClass " + m_train.classAttribute().value(j) + " :\n"); // constant term s.append(Utils.doubleToString(coefficients[j][0], 2 + m_numDecimalPlaces, m_numDecimalPlaces) + " + \n"); for (int i = 0; i < attributes[j].length; i++) { // attribute/coefficient pairs s.append("[" + m_numericDataHeader.attribute(attributes[j][i]).name() + "]"); s.append(" * " + Utils.doubleToString(coefficients[j][attributes[j][i] + 1], 2 + m_numDecimalPlaces, m_numDecimalPlaces)); if (i != attributes[j].length - 1) { s.append(" +"); } s.append("\n"); } } return new String(s); } /** * Returns class probabilities for an instance. * * @param instance the instance to compute the distribution for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ @Override public double[] distributionForInstance(Instance instance) throws Exception { instance = (Instance) instance.copy(); // set to numeric pseudo-class instance.setDataset(m_numericDataHeader); // calculate probs via Fs return probs(getFs(instance)); } /** * Cleanup in order to save memory. */ public void cleanup() { // save just header info m_train = new Instances(m_train, 0); m_numericData = null; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 14203 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy