weka.core.matrix.CholeskyDecomposition Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This software is a cooperative product of The MathWorks and the National
* Institute of Standards and Technology (NIST) which has been released to the
* public domain. Neither The MathWorks nor NIST assumes any responsibility
* whatsoever for its use by other parties, and makes no guarantees, expressed
* or implied, about its quality, reliability, or any other characteristic.
*/
/*
* CholeskyDecomposition.java
* Copyright (C) 1999 The Mathworks and NIST
*
*/
package weka.core.matrix;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import java.io.Serializable;
/**
* Cholesky Decomposition.
*
* For a symmetric, positive definite matrix A, the Cholesky decomposition is
* an lower triangular matrix L so that A = L*L'.
*
* If the matrix is not symmetric or positive definite, the constructor
* returns a partial decomposition and sets an internal flag that may
* be queried by the isSPD() method.
*
* Adapted from the JAMA package.
*
* @author The Mathworks and NIST
* @author Fracpete (fracpete at waikato dot ac dot nz)
* @version $Revision: 5953 $
*/
public class CholeskyDecomposition
implements Serializable, RevisionHandler {
/** for serialization */
private static final long serialVersionUID = -8739775942782694701L;
/**
* Array for internal storage of decomposition.
* @serial internal array storage.
*/
private double[][] L;
/**
* Row and column dimension (square matrix).
* @serial matrix dimension.
*/
private int n;
/**
* Symmetric and positive definite flag.
* @serial is symmetric and positive definite flag.
*/
private boolean isspd;
/**
* Cholesky algorithm for symmetric and positive definite matrix.
*
* @param Arg Square, symmetric matrix.
*/
public CholeskyDecomposition(Matrix Arg) {
// Initialize.
double[][] A = Arg.getArray();
n = Arg.getRowDimension();
L = new double[n][n];
isspd = (Arg.getColumnDimension() == n);
// Main loop.
for (int j = 0; j < n; j++) {
double[] Lrowj = L[j];
double d = 0.0;
for (int k = 0; k < j; k++) {
double[] Lrowk = L[k];
double s = 0.0;
for (int i = 0; i < k; i++) {
s += Lrowk[i]*Lrowj[i];
}
Lrowj[k] = s = (A[j][k] - s)/L[k][k];
d = d + s*s;
isspd = isspd & (A[k][j] == A[j][k]);
}
d = A[j][j] - d;
isspd = isspd & (d > 0.0);
L[j][j] = Math.sqrt(Math.max(d,0.0));
for (int k = j+1; k < n; k++) {
L[j][k] = 0.0;
}
}
}
/**
* Is the matrix symmetric and positive definite?
* @return true if A is symmetric and positive definite.
*/
public boolean isSPD() {
return isspd;
}
/**
* Return triangular factor.
* @return L
*/
public Matrix getL() {
return new Matrix(L,n,n);
}
/**
* Solve A*X = B
* @param B A Matrix with as many rows as A and any number of columns.
* @return X so that L*L'*X = B
* @exception IllegalArgumentException Matrix row dimensions must agree.
* @exception RuntimeException Matrix is not symmetric positive definite.
*/
public Matrix solve(Matrix B) {
if (B.getRowDimension() != n) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
}
if (!isspd) {
throw new RuntimeException("Matrix is not symmetric positive definite.");
}
// Copy right hand side.
double[][] X = B.getArrayCopy();
int nx = B.getColumnDimension();
// Solve L*Y = B;
for (int k = 0; k < n; k++) {
for (int j = 0; j < nx; j++) {
for (int i = 0; i < k ; i++) {
X[k][j] -= X[i][j]*L[k][i];
}
X[k][j] /= L[k][k];
}
}
// Solve L'*X = Y;
for (int k = n-1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
for (int i = k+1; i < n ; i++) {
X[k][j] -= X[i][j]*L[i][k];
}
X[k][j] /= L[k][k];
}
}
return new Matrix(X,n,nx);
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5953 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy