weka.core.neighboursearch.balltrees.MiddleOutConstructor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MiddleOutConstructor.java
* Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand
*/
package weka.core.neighboursearch.balltrees;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Random;
import java.util.Vector;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Randomizable;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
/**
* The class that builds a BallTree middle out.
*
* For more information see also:
*
* Andrew W. Moore: The Anchors Hierarchy: Using the Triangle Inequality to
* Survive High Dimensional Data. In: UAI '00: Proceedings of the 16th
* Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA,
* 397-405, 2000.
*
* Ashraf Masood Kibriya (2007). Fast Algorithms for Nearest Neighbour Search.
* Hamilton, New Zealand.
*
*
*
* BibTeX:
*
*
* @inproceedings{Moore2000,
* address = {San Francisco, CA, USA},
* author = {Andrew W. Moore},
* booktitle = {UAI '00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence},
* pages = {397-405},
* publisher = {Morgan Kaufmann Publishers Inc.},
* title = {The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data},
* year = {2000}
* }
*
* @mastersthesis{Kibriya2007,
* address = {Hamilton, New Zealand},
* author = {Ashraf Masood Kibriya},
* school = {Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato},
* title = {Fast Algorithms for Nearest Neighbour Search},
* year = {2007}
* }
*
*
*
*
* Valid options are:
*
*
*
* -S <num>
* The seed for the random number generator used
* in selecting random anchor.
* (default: 1)
*
*
*
* -R
* Use randomly chosen initial anchors.
*
*
*
*
* @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz)
* @version $Revision: 11269 $
*/
public class MiddleOutConstructor extends BallTreeConstructor implements
Randomizable, TechnicalInformationHandler {
/** for serialization. */
private static final long serialVersionUID = -8523314263062524462L;
/** Seed form random number generator. */
protected int m_RSeed = 1;
/**
* The random number generator for selecting the first anchor point randomly
* (if selecting randomly).
*/
protected Random rand = new Random(m_RSeed);
/**
* The radius of the smallest ball enclosing all the data points.
*/
private double rootRadius = -1;
/**
* True if the initial anchor is chosen randomly. False if it is the furthest
* point from the mean/centroid.
*/
protected boolean m_RandomInitialAnchor = true;
/**
* Creates a new instance of MiddleOutConstructor.
*/
public MiddleOutConstructor() {
}
/**
* Returns a string describing this nearest neighbour search algorithm.
*
* @return a description of the algorithm for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "The class that builds a BallTree middle out.\n\n"
+ "For more information see also:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Andrew W. Moore");
result
.setValue(
Field.TITLE,
"The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data");
result.setValue(Field.YEAR, "2000");
result
.setValue(
Field.BOOKTITLE,
"UAI '00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence");
result.setValue(Field.PAGES, "397-405");
result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers Inc.");
result.setValue(Field.ADDRESS, "San Francisco, CA, USA");
additional = result.add(Type.MASTERSTHESIS);
additional.setValue(Field.AUTHOR, "Ashraf Masood Kibriya");
additional.setValue(Field.TITLE,
"Fast Algorithms for Nearest Neighbour Search");
additional.setValue(Field.YEAR, "2007");
additional
.setValue(
Field.SCHOOL,
"Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato");
additional.setValue(Field.ADDRESS, "Hamilton, New Zealand");
return result;
}
/**
* Builds a ball tree middle out.
*
* @return The root node of the tree.
* @throws Exception If there is problem building the tree.
*/
@Override
public BallNode buildTree() throws Exception {
m_NumNodes = m_MaxDepth = m_NumLeaves = 0;
if (rootRadius == -1) {
rootRadius = BallNode
.calcRadius(m_InstList, m_Instances,
BallNode.calcCentroidPivot(m_InstList, m_Instances),
m_DistanceFunction);
}
BallNode root = buildTreeMiddleOut(0, m_Instances.numInstances() - 1);
return root;
}
/**
* Builds a ball tree middle out from the portion of the master index array
* given by supplied start and end index.
*
* @param startIdx The start of the portion in master index array.
* @param endIdx the end of the portion in master index array.
* @return The root node of the built tree.
* @throws Exception If there is some problem building the tree.
*/
protected BallNode buildTreeMiddleOut(int startIdx, int endIdx)
throws Exception {
Instance pivot;
double radius;
Vector anchors;
int numInsts = endIdx - startIdx + 1;
int numAnchors = (int) Math.round(Math.sqrt(numInsts));
// create anchor's hierarchy
if (numAnchors > 1) {
pivot = BallNode.calcCentroidPivot(startIdx, endIdx, m_InstList,
m_Instances);
radius = BallNode.calcRadius(startIdx, endIdx, m_InstList, m_Instances,
pivot, m_DistanceFunction);
if (numInsts <= m_MaxInstancesInLeaf
|| (rootRadius == 0 ? true : radius / rootRadius < m_MaxRelLeafRadius)) { // just
// make
// a
// leaf
// don't
// make
// anchors
// hierarchy
BallNode node = new BallNode(startIdx, endIdx, m_NumNodes, pivot,
radius);
return node;
}
anchors = new Vector(numAnchors);
createAnchorsHierarchy(anchors, numAnchors, startIdx, endIdx);
BallNode node = mergeNodes(anchors, startIdx, endIdx);
buildLeavesMiddleOut(node);
return node;
}// end anchors hierarchy
else {
BallNode node = new BallNode(startIdx, endIdx, m_NumNodes,
(pivot = BallNode.calcCentroidPivot(startIdx, endIdx, m_InstList,
m_Instances)), BallNode.calcRadius(startIdx, endIdx, m_InstList,
m_Instances, pivot, m_DistanceFunction));
return node;
}
}
/**
* Creates an anchors hierarchy from a portion of master index array.
*
* @param anchors The vector for putting the anchors into.
* @param numAnchors The number of anchors to create.
* @param startIdx The start of the portion of master index array.
* @param endIdx The end of the portion of master index array.
* @throws Exception If there is some problem in creating the hierarchy.
*/
protected void createAnchorsHierarchy(Vector anchors,
final int numAnchors, final int startIdx, final int endIdx)
throws Exception {
TempNode anchr1 = m_RandomInitialAnchor ? getRandomAnchor(startIdx, endIdx)
: getFurthestFromMeanAnchor(startIdx, endIdx);
TempNode amax = anchr1; // double maxradius = anchr1.radius;
TempNode newAnchor;
Vector anchorDistances = new Vector(numAnchors - 1);
anchors.add(anchr1);
// creating anchors
while (anchors.size() < numAnchors) {
// create new anchor
newAnchor = new TempNode();
newAnchor.points = new MyIdxList();
Instance newpivot = m_Instances.instance(amax.points.getFirst().idx);
newAnchor.anchor = newpivot;
newAnchor.idx = amax.points.getFirst().idx;
setInterAnchorDistances(anchors, newAnchor, anchorDistances);
if (stealPoints(newAnchor, anchors, anchorDistances)) {
newAnchor.radius = newAnchor.points.getFirst().distance;
} else {
newAnchor.radius = 0.0;
}
anchors.add(newAnchor);
// find new amax
amax = anchors.elementAt(0);
for (int i = 1; i < anchors.size(); i++) {
newAnchor = anchors.elementAt(i);
if (newAnchor.radius > amax.radius) {
amax = newAnchor;
}
}// end for
}// end while
}
/**
* Applies the middle out build procedure to the leaves of the tree. The leaf
* nodes should be the ones that were created by createAnchorsHierarchy(). The
* process continues recursively for the leaves created for each leaf of the
* given tree until for some leaf node <= m_MaxInstancesInLeaf instances
* remain in the leaf.
*
* @param node The root of the tree.
* @throws Exception If there is some problem in building the tree leaves.
*/
protected void buildLeavesMiddleOut(BallNode node) throws Exception {
if (node.m_Left != null && node.m_Right != null) { // if an internal node
buildLeavesMiddleOut(node.m_Left);
buildLeavesMiddleOut(node.m_Right);
} else if (node.m_Left != null || node.m_Right != null) {
throw new Exception("Invalid leaf assignment. Please check code");
} else { // if node is a leaf
BallNode n2 = buildTreeMiddleOut(node.m_Start, node.m_End);
if (n2.m_Left != null && n2.m_Right != null) {
node.m_Left = n2.m_Left;
node.m_Right = n2.m_Right;
buildLeavesMiddleOut(node);
// the stopping condition in buildTreeMiddleOut will stop the recursion,
// where it won't split a node at all, and we won't recurse here.
} else if (n2.m_Left != null || n2.m_Right != null) {
throw new Exception("Invalid leaf assignment. Please check code");
}
}
}
/**
* Merges nodes created by createAnchorsHierarchy() into one top node.
*
* @param list List of anchor nodes.
* @param startIdx The start of the portion of master index array containing
* these anchor nodes.
* @param endIdx The end of the portion of master index array containing these
* anchor nodes.
* @return The top/root node after merging the given anchor nodes.
* @throws Exception IF there is some problem in merging.
*/
protected BallNode mergeNodes(Vector list, int startIdx, int endIdx)
throws Exception {
for (int i = 0; i < list.size(); i++) {
TempNode n = list.get(i);
n.anchor = calcPivot(n.points, new MyIdxList(), m_Instances);
n.radius = calcRadius(n.points, new MyIdxList(), n.anchor, m_Instances);
}
double minRadius, tmpRadius; // tmpVolume, minVolume;
Instance pivot, minPivot = null;
TempNode parent;
int min1 = -1, min2 = -1;
while (list.size() > 1) { // main merging loop
minRadius = Double.POSITIVE_INFINITY;
for (int i = 0; i < list.size(); i++) {
TempNode first = list.get(i);
for (int j = i + 1; j < list.size(); j++) {
TempNode second = list.get(j);
pivot = calcPivot(first, second, m_Instances);
tmpRadius = calcRadius(first, second); // calcRadius(first.points,
// second.points, pivot,
// m_Instances);
if (tmpRadius < minRadius) { // (tmpVolume < minVolume) {
minRadius = tmpRadius; // minVolume = tmpVolume;
minPivot = pivot;
min1 = i;
min2 = j;
// minInstList = tmpInstList;
}
}// end for(j)
}// end for(i)
parent = new TempNode();
parent.left = list.get(min1);
parent.right = list.get(min2);
parent.anchor = minPivot;
parent.radius = calcRadius(parent.left.points, parent.right.points,
minPivot, m_Instances); // minRadius;
parent.points = parent.left.points.append(parent.left.points,
parent.right.points);
list.remove(min1);
list.remove(min2 - 1);
list.add(parent);
}// end while
TempNode tmpRoot = list.get(list.size() - 1);
if ((endIdx - startIdx + 1) != tmpRoot.points.length()) {
throw new Exception("Root nodes instance list is of irregular length. "
+ "Please check code. Length should " + "be: "
+ (endIdx - startIdx + 1) + " whereas it is found to be: "
+ tmpRoot.points.length());
}
for (int i = 0; i < tmpRoot.points.length(); i++) {
m_InstList[startIdx + i] = tmpRoot.points.get(i).idx;
}
BallNode node = makeBallTreeNodes(tmpRoot, startIdx, endIdx, 0);
return node;
}
/**
* Makes BallTreeNodes out of TempNodes.
*
* @param node The root TempNode
* @param startidx The start of the portion of master index array the
* TempNodes are made from.
* @param endidx The end of the portion of master index array the TempNodes
* are made from.
* @param depth The depth in the tree where this root TempNode is made (needed
* when leaves of a tree deeper down are built middle out).
* @return The root BallTreeNode.
*/
protected BallNode makeBallTreeNodes(TempNode node, int startidx, int endidx,
int depth) {
BallNode ball = null;
if (node.left != null && node.right != null) { // make an internal node
ball = new BallNode(startidx, endidx, m_NumNodes, node.anchor,
node.radius);
m_NumNodes += 1;
ball.m_Left = makeBallTreeNodes(node.left, startidx, startidx
+ node.left.points.length() - 1, depth + 1);
ball.m_Right = makeBallTreeNodes(node.right,
startidx + node.left.points.length(), endidx, depth + 1);
m_MaxDepth++;
} else { // make a leaf node
ball = new BallNode(startidx, endidx, m_NumNodes, node.anchor,
node.radius);
m_NumNodes += 1;
m_NumLeaves += 1;
}
return ball;
}
/**
* Returns an anchor point which is furthest from the mean point for a given
* set of points (instances) (The anchor instance is chosen from the given set
* of points).
*
* @param startIdx The start index of the points for which anchor point is
* required.
* @param endIdx The end index of the points for which anchor point is
* required.
* @return The furthest point/instance from the mean of given set of points.
*/
protected TempNode getFurthestFromMeanAnchor(int startIdx, int endIdx) {
TempNode anchor = new TempNode();
Instance centroid = BallNode.calcCentroidPivot(startIdx, endIdx,
m_InstList, m_Instances);
Instance temp;
double tmpr;
anchor.radius = Double.NEGATIVE_INFINITY;
for (int i = startIdx; i <= endIdx; i++) {
temp = m_Instances.instance(m_InstList[i]);
tmpr = m_DistanceFunction.distance(centroid, temp);
if (tmpr > anchor.radius) {
anchor.idx = m_InstList[i];
anchor.anchor = temp;
anchor.radius = tmpr;
}
}
setPoints(anchor, startIdx, endIdx, m_InstList);
return anchor;
}
/**
* Returns a random anchor point/instance from a given set of
* points/instances.
*
* @param startIdx The start index of the points for which anchor is required.
* @param endIdx The end index of the points for which anchor is required.
* @return The random anchor point/instance for the given set of
*/
protected TempNode getRandomAnchor(int startIdx, int endIdx) {
TempNode anchr1 = new TempNode();
anchr1.idx = m_InstList[startIdx + rand.nextInt((endIdx - startIdx + 1))];
anchr1.anchor = m_Instances.instance(anchr1.idx);
setPoints(anchr1, startIdx, endIdx, m_InstList);
anchr1.radius = anchr1.points.getFirst().distance;
return anchr1;
}
/**
* Sets the points of an anchor node. It takes the indices of points from the
* given portion of an index array and stores those indices, together with
* their distances to the given anchor node, in the point index list of the
* anchor node.
*
* @param node The node in which the points are needed to be set.
* @param startIdx The start of the portion in the given index array (the
* master index array).
* @param endIdx The end of the portion in the given index array.
* @param indices The index array.
*/
public void setPoints(TempNode node, int startIdx, int endIdx, int[] indices) {
node.points = new MyIdxList();
Instance temp;
double dist;
for (int i = startIdx; i <= endIdx; i++) {
temp = m_Instances.instance(indices[i]);
dist = m_DistanceFunction.distance(node.anchor, temp);
node.points.insertReverseSorted(indices[i], dist);
}
}
/**
* Sets the distances of a supplied new anchor to all the rest of the previous
* anchor points.
*
* @param anchors The old anchor points.
* @param newAnchor The new anchor point.
* @param anchorDistances The vector to store the distances of newAnchor to
* each of the old anchors.
* @throws Exception If there is some problem in calculating the distances.
*/
public void setInterAnchorDistances(Vector anchors,
TempNode newAnchor, Vector anchorDistances) throws Exception {
double[] distArray = new double[anchors.size()];
for (int i = 0; i < anchors.size(); i++) {
Instance anchr = anchors.elementAt(i).anchor;
distArray[i] = m_DistanceFunction.distance(anchr, newAnchor.anchor);
}
anchorDistances.add(distArray);
}
/**
* Removes points from old anchors that are nearer to the given new anchor and
* adds them to the list of points of the new anchor.
*
* @param newAnchor The new anchor.
* @param anchors The old anchors.
* @param anchorDistances The distances of new anchor to each of the old
* anchors.
* @return true if any points are removed from the old anchors
*/
public boolean stealPoints(TempNode newAnchor, Vector anchors,
Vector anchorDistances) {
double maxDist = Double.NEGATIVE_INFINITY;
double[] distArray = anchorDistances.lastElement();
for (double element : distArray) {
if (maxDist < element) {
maxDist = element;
}
}
boolean anyPointsStolen = false, pointsStolen = false;
TempNode anchorI;
double newDist, distI, interAnchMidDist;
Instance newAnchInst = newAnchor.anchor, anchIInst;
for (int i = 0; i < anchors.size(); i++) {
anchorI = anchors.elementAt(i);
anchIInst = anchorI.anchor;
pointsStolen = false;
interAnchMidDist = m_DistanceFunction.distance(newAnchInst, anchIInst) / 2D;
for (int j = 0; j < anchorI.points.length(); j++) {
ListNode tmp = anchorI.points.get(j);
// break if we reach a point whose distance is less than the midpoint
// of inter anchor distance
if (tmp.distance < interAnchMidDist) {
break;
}
// else test if this point can be stolen by the new anchor
newDist = m_DistanceFunction.distance(newAnchInst,
m_Instances.instance(tmp.idx));
distI = tmp.distance;
if (newDist < distI) {
newAnchor.points.insertReverseSorted(tmp.idx, newDist);
anchorI.points.remove(j);
anyPointsStolen = pointsStolen = true;
}
}
if (pointsStolen) {
anchorI.radius = anchorI.points.getFirst().distance;
}
}// end for
return anyPointsStolen;
}// end stealPoints()
/**
* /** Calculates the centroid pivot of a node based on its two child nodes
* (if merging two nodes).
*
* @param node1 The first child.
* @param node2 The second child.
* @param insts The set of instances on which the tree is being built (as
* dataset header information is required).
* @return The centroid pivot of a node.
*/
public Instance calcPivot(TempNode node1, TempNode node2, Instances insts) {
int classIdx = m_Instances.classIndex();
double[] attrVals = new double[insts.numAttributes()];
Instance temp;
double anchr1Ratio = (double) node1.points.length()
/ (node1.points.length() + node2.points.length()), anchr2Ratio = (double) node2.points
.length() / (node1.points.length() + node2.points.length());
;
for (int k = 0; k < node1.anchor.numValues(); k++) {
if (node1.anchor.index(k) == classIdx) {
continue;
}
attrVals[k] += node1.anchor.valueSparse(k) * anchr1Ratio;
}
for (int k = 0; k < node2.anchor.numValues(); k++) {
if (node2.anchor.index(k) == classIdx) {
continue;
}
attrVals[k] += node2.anchor.valueSparse(k) * anchr2Ratio;
}
temp = new DenseInstance(1.0, attrVals);
return temp;
}
/**
* Calculates the centroid pivot of a node based on the list of points that it
* contains (tbe two lists of its children are provided).
*
* @param list1 The point index list of first child.
* @param list2 The point index list of second child.
* @param insts The insts object on which the tree is being built (for header
* information).
* @return The centroid pivot of the node.
*/
public Instance calcPivot(MyIdxList list1, MyIdxList list2, Instances insts) {
int classIdx = m_Instances.classIndex();
double[] attrVals = new double[insts.numAttributes()];
Instance temp;
for (int i = 0; i < list1.length(); i++) {
temp = insts.instance(list1.get(i).idx);
for (int k = 0; k < temp.numValues(); k++) {
if (temp.index(k) == classIdx) {
continue;
}
attrVals[k] += temp.valueSparse(k);
}
}
for (int j = 0; j < list2.length(); j++) {
temp = insts.instance(list2.get(j).idx);
for (int k = 0; k < temp.numValues(); k++) {
if (temp.index(k) == classIdx) {
continue;
}
attrVals[k] += temp.valueSparse(k);
}
}
for (int j = 0, numInsts = list1.length() + list2.length(); j < attrVals.length; j++) {
attrVals[j] /= numInsts;
}
temp = new DenseInstance(1.0, attrVals);
return temp;
}
/**
* Calculates the radius of a node based on its two child nodes (if merging
* two nodes).
*
* @param n1 The first child of the node.
* @param n2 The second child of the node.
* @return The radius of the node.
* @throws Exception
*/
public double calcRadius(TempNode n1, TempNode n2) {
Instance p1 = n1.anchor, p2 = n2.anchor;
double radius = n1.radius + m_DistanceFunction.distance(p1, p2) + n2.radius;
return radius / 2;
}
/**
* Calculates the radius of a node based on the list of points that it
* contains (the two lists of its children are provided).
*
* @param list1 The point index list of first child.
* @param list2 The point index list of second child.
* @param pivot The centre/pivot of the node.
* @param insts The instances on which the tree is being built (for header
* info).
* @return The radius of the node.
*/
public double calcRadius(MyIdxList list1, MyIdxList list2, Instance pivot,
Instances insts) {
double radius = Double.NEGATIVE_INFINITY;
for (int i = 0; i < list1.length(); i++) {
double dist = m_DistanceFunction.distance(pivot,
insts.instance(list1.get(i).idx));
if (dist > radius) {
radius = dist;
}
}
for (int j = 0; j < list2.length(); j++) {
double dist = m_DistanceFunction.distance(pivot,
insts.instance(list2.get(j).idx));
if (dist > radius) {
radius = dist;
}
}
return radius;
}
/**
* Adds an instance to the tree. This implementation of MiddleOutConstructor
* doesn't support addition of instances to already built tree, hence it
* always throws an exception.
*
* @param node The root of the tree to which the instance is to be added.
* @param inst The instance to add to the tree.
* @return The updated master index array after adding the instance.
* @throws Exception Always as this implementation of MiddleOutConstructor
* doesn't support addition of instances after batch construction of
* the tree.
*/
@Override
public int[] addInstance(BallNode node, Instance inst) throws Exception {
throw new Exception("Addition of instances after the tree is built, not "
+ "possible with MiddleOutConstructor.");
}
/**
* Sets the maximum number of instances allowed in a leaf.
*
* @param num The maximum number of instances allowed in a leaf.
* @throws Exception If the num is < 2, as the method cannot work for < 2
* instances.
*/
@Override
public void setMaxInstancesInLeaf(int num) throws Exception {
if (num < 2) {
throw new Exception("The maximum number of instances in a leaf for "
+ "using MiddleOutConstructor must be >=2.");
}
super.setMaxInstancesInLeaf(num);
}
/**
* Sets the instances on which the tree is to be built.
*
* @param insts The instances on which to build the ball tree.
*/
@Override
public void setInstances(Instances insts) {
super.setInstances(insts);
rootRadius = -1; // this needs to be re-calculated by buildTree()
}
/**
* Sets the master index array that points to instances in m_Instances, so
* that only this array is manipulated, and m_Instances is left untouched.
*
* @param instList The master index array.
*/
@Override
public void setInstanceList(int[] instList) {
super.setInstanceList(instList);
rootRadius = -1; // this needs to be re-calculated by buildTree()
}
/**
* Returns the tip text for this property.
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String initialAnchorRandomTipText() {
return "Whether the initial anchor is chosen randomly.";
}
/**
* Gets whether if the initial anchor is chosen randomly.
*
* @return true if the initial anchor is a random one.
*/
public boolean isInitialAnchorRandom() {
return m_RandomInitialAnchor;
}
/**
* Sets whether if the initial anchor is chosen randomly. If not then if it is
* the furthest point from the mean/centroid.
*
* @param randomInitialAnchor Should be true if the first anchor is to be
* chosen randomly.
*/
public void setInitialAnchorRandom(boolean randomInitialAnchor) {
m_RandomInitialAnchor = randomInitialAnchor;
}
/**
* Returns the tip text for this property.
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String seedTipText() {
return "The seed value for the random number generator.";
}
/**
* Returns the seed for random number generator.
*
* @return The random number seed.
*/
@Override
public int getSeed() {
return m_RSeed;
}
/**
* Sets the seed for random number generator (that is used for selecting the
* first anchor point randomly).
*
* @param seed The seed.
*/
@Override
public void setSeed(int seed) {
m_RSeed = seed;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2025 Weber Informatics LLC | Privacy Policy