All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.pmml.jaxbbindings.REGRESSIONNORMALIZATIONMETHOD Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
//
// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference Implementation, v2.0-b52-fcs 
// See http://java.sun.com/xml/jaxb 
// Any modifications to this file will be lost upon recompilation of the source schema. 
// Generated on: 2013.12.20 at 12:48:21 PM GMT 
//


package weka.core.pmml.jaxbbindings;

import javax.xml.bind.annotation.XmlEnum;
import javax.xml.bind.annotation.XmlEnumValue;


/**
 * 

Java class for REGRESSIONNORMALIZATIONMETHOD. * *

The following schema fragment specifies the expected content contained within this class. *

*

 * <simpleType name="REGRESSIONNORMALIZATIONMETHOD">
 *   <restriction base="{http://www.w3.org/2001/XMLSchema}string">
 *     <enumeration value="none"/>
 *     <enumeration value="simplemax"/>
 *     <enumeration value="softmax"/>
 *     <enumeration value="logit"/>
 *     <enumeration value="probit"/>
 *     <enumeration value="cloglog"/>
 *     <enumeration value="exp"/>
 *     <enumeration value="loglog"/>
 *     <enumeration value="cauchit"/>
 *   </restriction>
 * </simpleType>
 * 
* */ @XmlEnum public enum REGRESSIONNORMALIZATIONMETHOD { @XmlEnumValue("cauchit") CAUCHIT("cauchit"), @XmlEnumValue("cloglog") CLOGLOG("cloglog"), @XmlEnumValue("exp") EXP("exp"), @XmlEnumValue("logit") LOGIT("logit"), @XmlEnumValue("loglog") LOGLOG("loglog"), @XmlEnumValue("none") NONE("none"), @XmlEnumValue("probit") PROBIT("probit"), @XmlEnumValue("simplemax") SIMPLEMAX("simplemax"), @XmlEnumValue("softmax") SOFTMAX("softmax"); private final String value; REGRESSIONNORMALIZATIONMETHOD(String v) { value = v; } public String value() { return value; } public static REGRESSIONNORMALIZATIONMETHOD fromValue(String v) { for (REGRESSIONNORMALIZATIONMETHOD c: REGRESSIONNORMALIZATIONMETHOD.values()) { if (c.value.equals(v)) { return c; } } throw new IllegalArgumentException(v.toString()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy