weka.estimators.MultivariateGaussianEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MultivariateNormalEstimator.java
* Copyright (C) 2013 University of Waikato
*/
package weka.estimators;
import no.uib.cipr.matrix.*;
import no.uib.cipr.matrix.Matrix;
import weka.core.Utils;
import java.io.Serializable;
/**
* Implementation of maximum likelihood Multivariate Distribution Estimation using Normal
* Distribution.
*
* @author Uday Kamath, PhD, George Mason University
* @author Eibe Frank, University of Waikato
* @version $Revision: 12904 $
*
*/
public class MultivariateGaussianEstimator implements MultivariateEstimator, Serializable {
/** Mean vector */
protected DenseVector mean;
/** Inverse of covariance matrix */
protected UpperSPDDenseMatrix covarianceInverse;
/** Factor to make density integrate to one (log of this factor) */
protected double lnconstant;
/** Ridge parameter to add to diagonal of covariance matrix */
protected double m_Ridge = 1e-6;
/**
* Log of twice the number pi: log(2*pi).
*/
public static final double Log2PI = Math.log(2 * Math.PI);
/**
* Returns string summarizing the estimator.
*/
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("Natural logarithm of normalizing factor: " + lnconstant + "\n\n");
sb.append("Mean vector:\n\n" + mean + "\n");
sb.append("Inverse of covariance matrix:\n\n" + covarianceInverse + "\n");
return sb.toString();
}
/**
* Returns the mean vector.
*/
public double[] getMean() {
return mean.getData();
}
/**
* Returns the log of the density value for the given vector.
*
* @param valuePassed input vector
* @return log density based on given distribution
*/
@Override
public double logDensity(double[] valuePassed) {
// calculate mean subtractions
Vector x = new DenseVector(valuePassed);
return lnconstant - 0.5 * x.dot(covarianceInverse.mult(x.add(-1.0, mean), new DenseVector(x.size())));
}
/**
* Generates the estimator based on the given observations and weight vector.
* Equal weights are assumed if the weight vector is null.
*/
@Override
public void estimate(double[][] observations, double[] weights) {
if (weights == null) {
weights = new double[observations.length];
for (int i = 0; i < weights.length; i++) {
weights[i] = 1.0;
}
}
DenseVector weightVector = new DenseVector(weights);
weightVector = weightVector.scale(1.0 / weightVector.norm(Vector.Norm.One));
mean = weightedMean(observations, weightVector);
Matrix cov = weightedCovariance(observations, weightVector, mean);
// Compute inverse of covariance matrix
DenseCholesky chol = new DenseCholesky(observations[0].length, true).factor((UpperSPDDenseMatrix)cov);
covarianceInverse = new UpperSPDDenseMatrix(chol.solve(Matrices.identity(observations[0].length)));
double logDeterminant = 0;
for (int i = 0; i < observations[0].length; i++) {
logDeterminant += Math.log(chol.getU().get(i, i));
}
logDeterminant *= 2;
lnconstant = -(Log2PI * observations[0].length + logDeterminant) * 0.5;
}
/**
* Generates pooled estimator for linear discriminant analysis based on the given groups of
* observations and weight vectors. The pooled covariance matrix is the weighted mean
* of the per-group covariance matrices. The pooled mean vector is the mean vector for all observations.
*
* @return the per group mean vectors
*/
public double[][] estimatePooled(double[][][] observations, double[][] weights) {
// Establish number of attributes and number of classes
int m = -1;
int c = observations.length;
for (int i = 0; i < observations.length; i++) {
if (observations[i].length > 0) {
m = observations[i][0].length;
}
}
if (m == -1) {
throw new IllegalArgumentException("Cannot compute pooled estimates with no data.");
}
// Compute per-group covariance matrices and mean vectors
Matrix[] groupCovariance = new Matrix[c];
DenseVector[] groupMean = new DenseVector[c];
double[] groupWeights = new double[c];
for (int i = 0; i < groupCovariance.length; i++) {
if (observations[i].length > 0) {
DenseVector weightVector = new DenseVector(weights[i]);
weightVector = weightVector.scale(1.0 / weightVector.norm(Vector.Norm.One));
groupMean[i] = weightedMean(observations[i], weightVector);
groupCovariance[i] = weightedCovariance(observations[i], weightVector, groupMean[i]);
groupWeights[i] = Utils.sum(weights[i]);
}
}
Utils.normalize(groupWeights);
// Pool covariance matrices and means
double[][] means = new double[c][];
Matrix cov = new UpperSPDDenseMatrix(m);
mean = new DenseVector(groupMean[0].size());
for (int i = 0; i < c; i++) {
if (observations[i].length > 0) {
cov = cov.add(groupWeights[i], groupCovariance[i]);
mean = (DenseVector) mean.add(groupWeights[i], groupMean[i]);
means[i] = groupMean[i].getData();
}
}
// Compute inverse of covariance matrix
DenseCholesky chol = new DenseCholesky(m, true).factor((UpperSPDDenseMatrix)cov);
covarianceInverse = new UpperSPDDenseMatrix(chol.solve(Matrices.identity(m)));
double logDeterminant = 0;
for (int i = 0; i < m; i++) {
logDeterminant += Math.log(chol.getU().get(i, i));
}
logDeterminant *= 2;
lnconstant = -(Log2PI * m + logDeterminant) * 0.5;
return means;
}
/**
* Computes the mean vector
* @param matrix the data (assumed to contain at least one row)
* @param weights the observation weights, normalized to sum to 1.
* @return the weighted mean
*/
private DenseVector weightedMean(double[][] matrix, DenseVector weights) {
return (DenseVector)new DenseMatrix(matrix).transMult(weights, new DenseVector(matrix[0].length));
}
/**
* Computes the estimate of the covariance matrix.
*
* @param matrix A multi-dimensional array containing the matrix values (assumed to contain at least one row).
* @param weights The observation weights, normalized to sum to 1.
* @param mean The values' mean vector.
* @return The covariance matrix, including the ridge.
*/
private UpperSPDDenseMatrix weightedCovariance(double[][] matrix, DenseVector weights, Vector mean) {
int rows = matrix.length;
int cols = matrix[0].length;
if (mean.size() != cols) {
throw new IllegalArgumentException("Length of the mean vector must match matrix.");
}
// Create matrix with centered transposed data, weighted appropriately
DenseMatrix transposed = new DenseMatrix(cols, rows);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
transposed.set(j, i, Math.sqrt(weights.get(i)) * (matrix[i][j] - mean.get(j)));
}
}
UpperSPDDenseMatrix covT = (UpperSPDDenseMatrix) new UpperSPDDenseMatrix(cols).rank1(transposed);
for (int i = 0; i < cols; i++) {
covT.add(i, i, m_Ridge);
}
return covT;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String ridgeTipText() {
return "The value of the ridge parameter.";
}
/**
* Get the value of Ridge.
*
* @return Value of Ridge.
*/
public double getRidge() {
return m_Ridge;
}
/**
* Set the value of Ridge.
*
* @param newRidge Value to assign to Ridge.
*/
public void setRidge(double newRidge) {
m_Ridge = newRidge;
}
/**
* Main method for testing this class.
* @param args command-line parameters
*/
public static void main(String[] args) {
double[][] dataset1 = new double[4][1];
dataset1[0][0] = 0.49;
dataset1[1][0] = 0.46;
dataset1[2][0] = 0.51;
dataset1[3][0] = 0.55;
MultivariateEstimator mv1 = new MultivariateGaussianEstimator();
mv1.estimate(dataset1, new double[]{0.7, 0.2, 0.05, 0.05});
System.err.println(mv1);
double integral1 = 0;
int numVals = 1000;
for (int i = 0; i < numVals; i++) {
double[] point = new double[1];
point[0] = (i + 0.5) * (1.0 / numVals);
double logdens = mv1.logDensity(point);
if (!Double.isNaN(logdens)) {
integral1 += Math.exp(logdens) * (1.0 / numVals);
}
}
System.err.println("Approximate integral: " + integral1);
double[][] dataset = new double[4][3];
dataset[0][0] = 0.49;
dataset[0][1] = 0.51;
dataset[0][2] = 0.53;
dataset[1][0] = 0.46;
dataset[1][1] = 0.47;
dataset[1][2] = 0.52;
dataset[2][0] = 0.51;
dataset[2][1] = 0.49;
dataset[2][2] = 0.47;
dataset[3][0] = 0.55;
dataset[3][1] = 0.52;
dataset[3][2] = 0.54;
MultivariateEstimator mv = new MultivariateGaussianEstimator();
mv.estimate(dataset, new double[]{2, 0.2, 0.05, 0.05});
System.err.println(mv);
double integral = 0;
int numVals2 = 200;
for (int i = 0; i < numVals2; i++) {
for (int j = 0; j < numVals2; j++) {
for (int k = 0; k < numVals2; k++) {
double[] point = new double[3];
point[0] = (i + 0.5) * (1.0 / numVals2);
point[1] = (j + 0.5) * (1.0 / numVals2);
point[2] = (k + 0.5) * (1.0 / numVals2);
double logdens = mv.logDensity(point);
if (!Double.isNaN(logdens)) {
integral += Math.exp(logdens) / (numVals2 * numVals2 * numVals2);
}
}
}
}
System.err.println("Approximate integral: " + integral);
double[][] dataset3 = new double[5][3];
dataset3[0][0] = 0.49;
dataset3[0][1] = 0.51;
dataset3[0][2] = 0.53;
dataset3[4][0] = 0.49;
dataset3[4][1] = 0.51;
dataset3[4][2] = 0.53;
dataset3[1][0] = 0.46;
dataset3[1][1] = 0.47;
dataset3[1][2] = 0.52;
dataset3[2][0] = 0.51;
dataset3[2][1] = 0.49;
dataset3[2][2] = 0.47;
dataset3[3][0] = 0.55;
dataset3[3][1] = 0.52;
dataset3[3][2] = 0.54;
MultivariateEstimator mv3 = new MultivariateGaussianEstimator();
mv3.estimate(dataset3, new double[]{1, 0.2, 0.05, 0.05, 1});
System.err.println(mv3);
double integral3 = 0;
int numVals3 = 200;
for (int i = 0; i < numVals3; i++) {
for (int j = 0; j < numVals3; j++) {
for (int k = 0; k < numVals3; k++) {
double[] point = new double[3];
point[0] = (i + 0.5) * (1.0 / numVals3);
point[1] = (j + 0.5) * (1.0 / numVals3);
point[2] = (k + 0.5) * (1.0 / numVals3);
double logdens = mv.logDensity(point);
if (!Double.isNaN(logdens)) {
integral3 += Math.exp(logdens) / (numVals3 * numVals3 * numVals3);
}
}
}
}
System.err.println("Approximate integral: " + integral3);
double[][][] dataset4 = new double[2][][];
dataset4[0] = new double[2][3];
dataset4[1] = new double[3][3];
dataset4[0][0][0] = 0.49;
dataset4[0][0][1] = 0.51;
dataset4[0][0][2] = 0.53;
dataset4[0][1][0] = 0.49;
dataset4[0][1][1] = 0.51;
dataset4[0][1][2] = 0.53;
dataset4[1][0][0] = 0.46;
dataset4[1][0][1] = 0.47;
dataset4[1][0][2] = 0.52;
dataset4[1][1][0] = 0.51;
dataset4[1][1][1] = 0.49;
dataset4[1][1][2] = 0.47;
dataset4[1][2][0] = 0.55;
dataset4[1][2][1] = 0.52;
dataset4[1][2][2] = 0.54;
double[][] weights = new double[2][];
weights[0] = new double[] {1, 3};
weights[1] = new double[] {2, 1, 1};
MultivariateGaussianEstimator mv4 = new MultivariateGaussianEstimator();
mv4.estimatePooled(dataset4, weights);
System.err.println(mv4);
double integral4 = 0;
int numVals4 = 200;
for (int i = 0; i < numVals4; i++) {
for (int j = 0; j < numVals4; j++) {
for (int k = 0; k < numVals4; k++) {
double[] point = new double[3];
point[0] = (i + 0.5) * (1.0 / numVals4);
point[1] = (j + 0.5) * (1.0 / numVals4);
point[2] = (k + 0.5) * (1.0 / numVals4);
double logdens = mv.logDensity(point);
if (!Double.isNaN(logdens)) {
integral4 += Math.exp(logdens) / (numVals4 * numVals4 * numVals4);
}
}
}
}
System.err.println("Approximate integral: " + integral4);
double[][][] dataset5 = new double[2][][];
dataset5[0] = new double[4][3];
dataset5[1] = new double[4][3];
dataset5[0][0][0] = 0.49;
dataset5[0][0][1] = 0.51;
dataset5[0][0][2] = 0.53;
dataset5[0][1][0] = 0.49;
dataset5[0][1][1] = 0.51;
dataset5[0][1][2] = 0.53;
dataset5[0][2][0] = 0.49;
dataset5[0][2][1] = 0.51;
dataset5[0][2][2] = 0.53;
dataset5[0][3][0] = 0.49;
dataset5[0][3][1] = 0.51;
dataset5[0][3][2] = 0.53;
dataset5[1][0][0] = 0.46;
dataset5[1][0][1] = 0.47;
dataset5[1][0][2] = 0.52;
dataset5[1][1][0] = 0.46;
dataset5[1][1][1] = 0.47;
dataset5[1][1][2] = 0.52;
dataset5[1][2][0] = 0.51;
dataset5[1][2][1] = 0.49;
dataset5[1][2][2] = 0.47;
dataset5[1][3][0] = 0.55;
dataset5[1][3][1] = 0.52;
dataset5[1][3][2] = 0.54;
double[][] weights2 = new double[2][];
weights2[0] = new double[] {1, 1, 1, 1};
weights2[1] = new double[] {1, 1, 1, 1};
MultivariateGaussianEstimator mv5 = new MultivariateGaussianEstimator();
mv5.estimatePooled(dataset5, weights2);
System.err.println(mv5);
double integral5 = 0;
int numVals5 = 200;
for (int i = 0; i < numVals5; i++) {
for (int j = 0; j < numVals5; j++) {
for (int k = 0; k < numVals5; k++) {
double[] point = new double[3];
point[0] = (i + 0.5) * (1.0 / numVals5);
point[1] = (j + 0.5) * (1.0 / numVals5);
point[2] = (k + 0.5) * (1.0 / numVals5);
double logdens = mv.logDensity(point);
if (!Double.isNaN(logdens)) {
integral5 += Math.exp(logdens) / (numVals5 * numVals5 * numVals5);
}
}
}
}
System.err.println("Approximate integral: " + integral5);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy