weka.gui.beans.StreamThroughput Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* StreamThroughput.java
* Copyright (C) 2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.gui.beans;
import java.io.Serializable;
import weka.gui.Logger;
/**
* Class for measuring throughput of an incremental Knowledge Flow step. Typical
* usage is to construct a StreamThroughput object at the start of the stream
* (i.e. FORMAT_AVAILABLE event) and then for each instance received call
* updateStart() just before processing the instance and then updateEnd() just
* after. If updateEnd() is called *before* sending any event to downstream
* step(s) then throughput just with respect to work done by the step will be
* measured.
*
* Elapsed time to process each instance (along with the number of instances) is
* accumulated over the sample time period. Instances per second is computed at
* the end of each sample period and added to a running total. Average
* instances/sec is reported to the status area of the log.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 9243 $
*/
public class StreamThroughput implements Serializable {
/**
* For serialization
*/
private static final long serialVersionUID = 2820675210555581676L;
protected transient int m_avInstsPerSec = 0;
protected transient double m_startTime;
protected transient int m_instanceCount;
protected transient int m_sampleCount;
protected transient String m_statusMessagePrefix = "";
/**
* sample period over which to count instances processed and instances/sec
* throughput
*/
protected transient int m_sampleTime = 2000;
protected transient double m_cumulativeTime;
protected transient int m_numSamples;
/**
* Construct a new StreamThroughput
*
* @param statusMessagePrefix the unique identifier of the Knowledge Flow
* component being measured. This enables the correct line in the
* status area to be updated. See any Knowledge Flow step for an
* example.
*/
public StreamThroughput(String statusMessagePrefix) {
m_instanceCount = 0;
m_sampleCount = 0;
m_numSamples = 0;
m_cumulativeTime = 0;
m_startTime = System.currentTimeMillis();
m_statusMessagePrefix = statusMessagePrefix;
}
/**
* Construct a new StreamThroughput
*
* @param statusMessagePrefix the unique identifier of the Knowledge Flow
* component being measured. This enables the correct line in the
* status area to be updated. See any Knowledge Flow step for an
* example.
* @param initialMessage an initial message to print to the status area for
* this step on construction
* @param log the log to write status updates to
*/
public StreamThroughput(String statusMessagePrefix, String initialMessage,
Logger log) {
this(statusMessagePrefix);
if (log != null) {
log.statusMessage(m_statusMessagePrefix + initialMessage);
}
}
/**
* Set the sampling period (in milliseconds) to compute througput over
*
* @param period the sampling period in milliseconds
*/
public void setSamplePeriod(int period) {
m_sampleTime = period;
}
protected transient double m_updateStart;
/**
* Register a throughput measurement start point
*/
public void updateStart() {
m_updateStart = System.currentTimeMillis();
}
/**
* Register a throughput measurement end point. Collects counts and
* statistics. Will update the status area for the KF step in question if the
* sample period has elapsed.
*
* @param log the log to write status updates to
*/
public void updateEnd(Logger log) {
m_instanceCount++;
m_sampleCount++;
double end = System.currentTimeMillis();
double temp = end - m_updateStart;
m_cumulativeTime += temp;
boolean toFastToMeasure = false;
if ((end - m_startTime) >= m_sampleTime) {
computeUpdate(end);
if (log != null) {
log.statusMessage(m_statusMessagePrefix + "Processed "
+ m_instanceCount + " insts @ " + m_avInstsPerSec / m_numSamples
+ " insts/sec" + (toFastToMeasure ? "*" : ""));
}
m_sampleCount = 0;
m_cumulativeTime = 0;
m_startTime = System.currentTimeMillis();
}
}
protected boolean computeUpdate(double end) {
boolean toFastToMeasure = false;
int instsPerSec = 0;
if (m_cumulativeTime == 0) {
// all single instance updates have taken < 1 millisecond each!
// the best we can do is compute the insts/sec based on the total
// number of instances processed in the elapsed sample time
// (rather than using the total number processed and the actual
// cumulative elapsed processing time). This is going to be closer
// to the throughput for the entire flow rather than for the component
// itself
double sampleTime = (end - m_startTime);
instsPerSec = (int) (m_sampleCount / (sampleTime / 1000.0));
toFastToMeasure = true;
} else {
instsPerSec = (int) (m_sampleCount / (m_cumulativeTime / 1000.0));
}
m_numSamples++;
m_avInstsPerSec += instsPerSec;
return toFastToMeasure;
}
/**
* Get the average instances per second
*
* @return the average instances per second processed
*/
public int getAverageInstancesPerSecond() {
int nS = m_numSamples > 0 ? m_numSamples : 1;
return m_avInstsPerSec / nS;
}
/**
* Register the end of measurement. Writes a "Finished" update (that includes
* the final throughput info) to the status area of the log.
*
* @param log the log to write to
* @return the message written to the status area.
*/
public String finished(Logger log) {
if (m_avInstsPerSec == 0) {
computeUpdate(System.currentTimeMillis());
}
int nS = m_numSamples > 0 ? m_numSamples : 1;
String msg = "Finished - " + m_instanceCount + " insts @ "
+ m_avInstsPerSec / nS + " insts/sec";
if (log != null) {
log.statusMessage(m_statusMessagePrefix + msg);
}
return msg;
}
/**
* Register the end of measurement. Does not write a "Finished" update to the
* log
*
* @return a message that contains the final throughput info.
*/
public String finished() {
if (m_avInstsPerSec == 0) {
computeUpdate(System.currentTimeMillis());
}
int nS = m_numSamples > 0 ? m_numSamples : 1;
String msg = "Finished - " + m_instanceCount + " insts @ "
+ m_avInstsPerSec / nS + " insts/sec";
return msg;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy