All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.lazy.KStar Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    KStar.java
 *    Copyright (C) 1995-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.lazy;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.UpdateableClassifier;
import weka.classifiers.lazy.kstar.KStarCache;
import weka.classifiers.lazy.kstar.KStarConstants;
import weka.classifiers.lazy.kstar.KStarNominalAttribute;
import weka.classifiers.lazy.kstar.KStarNumericAttribute;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;

/**
 
 * K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function.  It differs from other instance-based learners in that it uses an entropy-based distance function.
*
* For more information on K*, see
*
* John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, 108-114, 1995. *

* * BibTeX: *

 * @inproceedings{Cleary1995,
 *    author = {John G. Cleary and Leonard E. Trigg},
 *    booktitle = {12th International Conference on Machine Learning},
 *    pages = {108-114},
 *    title = {K*: An Instance-based Learner Using an Entropic Distance Measure},
 *    year = {1995}
 * }
 * 
*

* * Valid options are:

* *

 -B <num>
 *  Manual blend setting (default 20%)
 * 
* *
 -E
 *  Enable entropic auto-blend setting (symbolic class only)
 * 
* *
 -M <char>
 *  Specify the missing value treatment mode (default a)
 *  Valid options are: a(verage), d(elete), m(axdiff), n(ormal)
 * 
* * * @author Len Trigg ([email protected]) * @author Abdelaziz Mahoui ([email protected]) - Java port * @version $Revision: 10141 $ */ public class KStar extends AbstractClassifier implements KStarConstants, UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 332458330800479083L; /** The training instances used for classification. */ protected Instances m_Train; /** The number of instances in the dataset */ protected int m_NumInstances; /** The number of class values */ protected int m_NumClasses; /** The number of attributes */ protected int m_NumAttributes; /** The class attribute type */ protected int m_ClassType; /** Table of random class value colomns */ protected int [][] m_RandClassCols; /** Flag turning on and off the computation of random class colomns */ protected int m_ComputeRandomCols = ON; /** Flag turning on and off the initialisation of config variables */ protected int m_InitFlag = ON; /** * A custom data structure for caching distinct attribute values * and their scale factor or stop parameter. */ protected KStarCache [] m_Cache; /** missing value treatment */ protected int m_MissingMode = M_AVERAGE; /** 0 = use specified blend, 1 = entropic blend setting */ protected int m_BlendMethod = B_SPHERE; /** default sphere of influence blend setting */ protected int m_GlobalBlend = 20; /** Define possible missing value handling methods */ public static final Tag [] TAGS_MISSING = { new Tag(M_DELETE, "Ignore the instances with missing values"), new Tag(M_MAXDIFF, "Treat missing values as maximally different"), new Tag(M_NORMAL, "Normalize over the attributes"), new Tag(M_AVERAGE, "Average column entropy curves") }; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "K* is an instance-based classifier, that is the class of a test " + "instance is based upon the class of those training instances " + "similar to it, as determined by some similarity function. It differs " + "from other instance-based learners in that it uses an entropy-based " + "distance function.\n\n" + "For more information on K*, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "John G. Cleary and Leonard E. Trigg"); result.setValue(Field.TITLE, "K*: An Instance-based Learner Using an Entropic Distance Measure"); result.setValue(Field.BOOKTITLE, "12th International Conference on Machine Learning"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.PAGES, "108-114"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); m_Train = new Instances(instances, 0, instances.numInstances()); // initializes class attributes ** java-speaking! :-) ** init_m_Attributes(); } /** * Adds the supplied instance to the training set * * @param instance the instance to add * @throws Exception if instance could not be incorporated successfully */ public void updateClassifier(Instance instance) throws Exception { if (m_Train.equalHeaders(instance.dataset()) == false) throw new Exception("Incompatible instance types\n" + m_Train.equalHeadersMsg(instance.dataset())); if ( instance.classIsMissing() ) return; m_Train.add(instance); // update relevant attributes ... update_m_Attributes(); } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if an error occurred during the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { double transProb = 0.0, temp = 0.0; double [] classProbability = new double[m_NumClasses]; double [] predictedValue = new double[1]; // initialization ... for (int i=0; i enu = m_Train.enumerateInstances(); while ( enu.hasMoreElements() ) { trainInstance = (Instance)enu.nextElement(); transProb = instanceTransformationProbability(instance, trainInstance); switch ( m_ClassType ) { case Attribute.NOMINAL: classProbability[(int)trainInstance.classValue()] += transProb; break; case Attribute.NUMERIC: predictedValue[0] += transProb * trainInstance.classValue(); temp += transProb; break; } } if (m_ClassType == Attribute.NOMINAL) { double sum = Utils.sum(classProbability); if (sum <= 0.0) for (int i=0; i listOptions() { Vector




© 2015 - 2025 Weber Informatics LLC | Privacy Policy