All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.gui.beans.ClassifierPerformanceEvaluator Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    ClassifierPerformanceEvaluator.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.gui.beans;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.Vector;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

import weka.classifiers.AggregateableEvaluation;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.evaluation.ThresholdCurve;
import weka.core.BatchPredictor;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.OptionHandler;
import weka.core.Utils;
import weka.experiment.Task;
import weka.experiment.TaskStatusInfo;
import weka.gui.explorer.ClassifierErrorsPlotInstances;
import weka.gui.explorer.ExplorerDefaults;
import weka.gui.visualize.PlotData2D;

/**
 * A bean that evaluates the performance of batch trained classifiers
 * 
 * @author Mark Hall
 * @version $Revision: 12704 $
 */
public class ClassifierPerformanceEvaluator extends AbstractEvaluator implements
  BatchClassifierListener, Serializable, UserRequestAcceptor, EventConstraints {

  /** for serialization */
  private static final long serialVersionUID = -3511801418192148690L;

  /**
   * Evaluation object used for evaluating a classifier
   */
  private transient AggregateableEvaluation m_eval;
  private transient Instances m_aggregatedPlotInstances = null;
  private transient ArrayList m_aggregatedPlotSizes = null;
  private transient ArrayList m_aggregatedPlotShapes = null;

  // private transient Thread m_evaluateThread = null;

  private transient long m_currentBatchIdentifier;
  private transient int m_setsComplete;

  private final Vector m_textListeners =
    new Vector();
  private final Vector m_thresholdListeners =
    new Vector();
  private final Vector m_visualizableErrorListeners =
    new Vector();

  protected transient ThreadPoolExecutor m_executorPool;
  protected transient List m_tasks;

  protected boolean m_errorPlotPointSizeProportionalToMargin;

  /**
   * Number of threads to use to train models with
   */
  protected int m_executionSlots = 2;

  /** Evaluation metrics to output */
  protected String m_selectedEvalMetrics = "";
  protected List m_metricsList = new ArrayList();

  public ClassifierPerformanceEvaluator() {
    m_visual.loadIcons(BeanVisual.ICON_PATH
      + "ClassifierPerformanceEvaluator.gif", BeanVisual.ICON_PATH
      + "ClassifierPerformanceEvaluator_animated.gif");
    m_visual.setText("ClassifierPerformanceEvaluator");

    m_metricsList = Evaluation.getAllEvaluationMetricNames();
    m_metricsList.remove("Coverage");
    m_metricsList.remove("Region size");
    StringBuilder b = new StringBuilder();
    for (String s : m_metricsList) {
      b.append(s).append(",");
    }
    m_selectedEvalMetrics = b.substring(0, b.length() - 1);
  }

  protected void stringToList(String l) {
    if (l != null && l.length() > 0) {
      String[] parts = l.split(",");
      m_metricsList.clear();
      for (String s : parts) {
        m_metricsList.add(s.trim());
      }
    }
  }

  /**
   * Set the evaluation metrics to output (as a comma-separated list).
   * 
   * @param m the evaluation metrics to output
   */
  public void setEvaluationMetricsToOutput(String m) {
    m_selectedEvalMetrics = m;
    stringToList(m);
  }

  /**
   * Get the evaluation metrics to output (as a comma-separated list).
   * 
   * @return the evaluation metrics to output
   */
  public String getEvaluationMetricsToOutput() {
    return m_selectedEvalMetrics;
  }

  /**
   * Get the tip text for this property.
   * 
   * @return the tip text for this property.
   */
  public String evaluationMetricsToOutputTipText() {
    return "A comma-separated list of evaluation metrics to output";
  }

  /**
   * Set whether the point size on classification error plots should be
   * proportional to the prediction margin.
   * 
   * @param e true if the point size is to be proportional to the margin.
   */
  public void setErrorPlotPointSizeProportionalToMargin(boolean e) {
    m_errorPlotPointSizeProportionalToMargin = e;
  }

  /**
   * Get whether the point size on classification error plots should be
   * proportional to the prediction margin.
   * 
   * @return true if the point size is to be proportional to the margin.
   */
  public boolean getErrorPlotPointSizeProportionalToMargin() {
    return m_errorPlotPointSizeProportionalToMargin;
  }

  /**
   * Get the tip text for this property.
   * 
   * @return the tip text for this property.
   */
  public String errorPlotPointSizeProportionalToMarginTipText() {
    return "Set the point size proportional to the prediction "
      + "margin for classification error plots";
  }

  /**
   * Get the number of execution slots to use.
   * 
   * @return the number of execution slots to use
   */
  public int getExecutionSlots() {
    return m_executionSlots;
  }

  /**
   * Set the number of executions slots to use.
   * 
   * @param slots the number of execution slots to use
   */
  public void setExecutionSlots(int slots) {
    m_executionSlots = slots;
  }

  /**
   * Get the tip text for this property.
   * 
   * @return the tip text for this property.
   */
  public String executionSlotsTipText() {
    return "Set the number of evaluation tasks to run in parallel.";
  }

  private void startExecutorPool() {

    if (m_executorPool != null) {
      m_executorPool.shutdownNow();
    }

    m_executorPool =
      new ThreadPoolExecutor(m_executionSlots, m_executionSlots, 120,
        TimeUnit.SECONDS, new LinkedBlockingQueue());
  }

  /**
   * Set a custom (descriptive) name for this bean
   * 
   * @param name the name to use
   */
  @Override
  public void setCustomName(String name) {
    m_visual.setText(name);
  }

  /**
   * Get the custom (descriptive) name for this bean (if one has been set)
   * 
   * @return the custom name (or the default name)
   */
  @Override
  public String getCustomName() {
    return m_visual.getText();
  }

  /**
   * Global info for this bean
   * 
   * @return a String value
   */
  public String globalInfo() {
    return "Evaluate the performance of batch trained classifiers.";
  }

  /** for generating plottable instance with predictions appended. */
  private transient ClassifierErrorsPlotInstances m_PlotInstances = null;

  protected static Evaluation adjustForInputMappedClassifier(Evaluation eval,
    weka.classifiers.Classifier classifier, Instances inst,
    ClassifierErrorsPlotInstances plotInstances) throws Exception {

    if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
      Instances mappedClassifierHeader =
        ((weka.classifiers.misc.InputMappedClassifier) classifier)
          .getModelHeader(new Instances(inst, 0));

      eval = new Evaluation(new Instances(mappedClassifierHeader, 0));

      if (!eval.getHeader().equalHeaders(inst)) {
        // When the InputMappedClassifier is loading a model,
        // we need to make a new dataset that maps the test instances to
        // the structure expected by the mapped classifier - this is only
        // to ensure that the ClassifierPlotInstances object is configured
        // in accordance with what the embeded classifier was trained with
        Instances mappedClassifierDataset =
          ((weka.classifiers.misc.InputMappedClassifier) classifier)
            .getModelHeader(new Instances(mappedClassifierHeader, 0));
        for (int zz = 0; zz < inst.numInstances(); zz++) {
          Instance mapped =
            ((weka.classifiers.misc.InputMappedClassifier) classifier)
              .constructMappedInstance(inst.instance(zz));
          mappedClassifierDataset.add(mapped);
        }

        eval.setPriors(mappedClassifierDataset);
        plotInstances.setInstances(mappedClassifierDataset);
        plotInstances.setClassifier(classifier);
        plotInstances.setClassIndex(mappedClassifierDataset.classIndex());
        plotInstances.setEvaluation(eval);
      }
    }

    return eval;
  }

  /**
   * Inner class for running an evaluation on a split
   * 
   * @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
   * @version $Revision: 12704 $
   */
  protected class EvaluationTask implements Runnable, Task {

    private static final long serialVersionUID = -8939077467030259059L;
    protected Instances m_testData;
    protected Instances m_trainData;
    protected int m_setNum;
    protected int m_maxSetNum;
    protected Classifier m_classifier;
    protected boolean m_stopped;
    protected String m_evalLabel = "";

    /**
     * Constructor for an EvaluationTask
     * 
     * @param classifier the classifier being evaluated
     * @param trainData the training data
     * @param testData the test data
     * @param setNum the set number
     * @param maxSetNum maximum number of sets
     * @param eventLabel the label to associate with this evaluation (for
     *          charting)
     */
    public EvaluationTask(Classifier classifier, Instances trainData,
      Instances testData, int setNum, int maxSetNum, String evalLabel) {
      m_classifier = classifier;
      m_setNum = setNum;
      m_maxSetNum = maxSetNum;
      m_testData = testData;
      m_trainData = trainData;
      if (evalLabel != null) {
        m_evalLabel = evalLabel;
      }
    }

    public void setStopped() {
      m_stopped = true;
    }

    @Override
    public void run() {
      execute();
    }

    @Override
    public void execute() {
      if (m_stopped) {
        return;
      }

      if (m_logger != null) {
        m_logger.statusMessage(statusMessagePrefix() + "Evaluating ("
          + m_setNum + ")...");
      }
      try {

        ClassifierErrorsPlotInstances plotInstances =
          ExplorerDefaults.getClassifierErrorsPlotInstances();
        Evaluation eval = null;

        if (m_trainData == null || m_trainData.numInstances() == 0) {
          eval = new Evaluation(m_testData);
          plotInstances.setInstances(m_testData);
          plotInstances.setClassifier(m_classifier);
          plotInstances.setClassIndex(m_testData.classIndex());
          plotInstances.setEvaluation(eval);
          plotInstances
            .setPointSizeProportionalToMargin(m_errorPlotPointSizeProportionalToMargin);
          eval =
            adjustForInputMappedClassifier(eval, m_classifier, m_testData,
              plotInstances);

          eval.useNoPriors();
          eval.setMetricsToDisplay(m_metricsList);
        } else {
          eval = new Evaluation(m_trainData);
          plotInstances.setInstances(m_trainData);
          plotInstances.setClassifier(m_classifier);
          plotInstances.setClassIndex(m_trainData.classIndex());
          plotInstances.setEvaluation(eval);
          plotInstances
            .setPointSizeProportionalToMargin(m_errorPlotPointSizeProportionalToMargin);
          eval =
            adjustForInputMappedClassifier(eval, m_classifier, m_trainData,
              plotInstances);
          eval.setMetricsToDisplay(m_metricsList);
        }

        plotInstances.setUp();

        if (m_classifier instanceof BatchPredictor
          && ((BatchPredictor) m_classifier)
            .implementsMoreEfficientBatchPrediction()) {
          double[][] predictions =
            ((BatchPredictor) m_classifier)
              .distributionsForInstances(m_testData);
          plotInstances.process(m_testData, predictions, eval);
        } else {

          for (int i = 0; i < m_testData.numInstances(); i++) {
            if (m_stopped) {
              break;
            }
            Instance temp = m_testData.instance(i);
            plotInstances.process(temp, m_classifier, eval);
          }
        }

        if (m_stopped) {
          return;
        }

        aggregateEvalTask(eval, m_classifier, m_testData, plotInstances,
          m_setNum, m_maxSetNum, m_evalLabel);

      } catch (Exception ex) {
        ClassifierPerformanceEvaluator.this.stop(); // stop all processing
        if (m_logger != null) {
          m_logger.logMessage("[ClassifierPerformanceEvaluator] "
            + statusMessagePrefix() + " problem evaluating classifier. "
            + ex.getMessage());
        }
        ex.printStackTrace();
      }
    }

    @Override
    public TaskStatusInfo getTaskStatus() {
      // TODO Auto-generated method stub
      return null;
    }
  }

  /**
   * Subclass of ClassifierErrorsPlotInstances to allow plot point sizes to be
   * scaled according to global min/max values.
   * 
   * @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
   */
  protected static class AggregateableClassifierErrorsPlotInstances extends
    ClassifierErrorsPlotInstances {

    /**
     * For serialization
     */
    private static final long serialVersionUID = 2012744784036684168L;

    /**
     * Set the vector of plot shapes to use;
     * 
     * @param plotShapes
     */
    @Override
    public void setPlotShapes(ArrayList plotShapes) {
      m_PlotShapes = plotShapes;
    }

    /**
     * Set the vector of plot sizes to use
     * 
     * @param plotSizes the plot sizes to use
     */
    @Override
    public void setPlotSizes(ArrayList plotSizes) {
      m_PlotSizes = plotSizes;
    }

    public void setPlotInstances(Instances inst) {
      m_PlotInstances = inst;
    }

    @Override
    protected void finishUp() {
      m_FinishUpCalled = true;

      if (!m_SaveForVisualization) {
        return;
      }

      if (m_Instances.classAttribute().isNumeric()
        || m_pointSizeProportionalToMargin) {
        scaleNumericPredictions();
      }
    }
  }

  /**
   * Takes an evaluation object from a task and aggregates it with the overall
   * one.
   * 
   * @param eval the evaluation object to aggregate
   * @param classifier the classifier used by the task
   * @param testData the testData from the task
   * @param plotInstances the ClassifierErrorsPlotInstances object from the task
   * @param setNum the set number processed by the task
   * @param maxSetNum the maximum number of sets in this batch
   * @param evalLabel the label to associate with the results of this evaluation
   */
  @SuppressWarnings({ "deprecation", "unchecked" })
  protected synchronized void aggregateEvalTask(Evaluation eval,
    Classifier classifier, Instances testData,
    ClassifierErrorsPlotInstances plotInstances, int setNum, int maxSetNum,
    String evalLabel) {

    m_eval.aggregate(eval);

    if (m_aggregatedPlotInstances == null) {
      // get these first so that the post-processing does not scale the sizes!!
      m_aggregatedPlotShapes =
        (ArrayList) plotInstances.getPlotShapes().clone();
      m_aggregatedPlotSizes =
        (ArrayList) plotInstances.getPlotSizes().clone();

      // this calls the post-processing, so do this last
      m_aggregatedPlotInstances =
        new Instances(plotInstances.getPlotInstances());
    } else {
      // get these first so that post-processing does not scale sizes
      ArrayList tmpSizes =
        (ArrayList) plotInstances.getPlotSizes().clone();
      ArrayList tmpShapes =
        (ArrayList) plotInstances.getPlotShapes().clone();

      Instances temp = plotInstances.getPlotInstances();
      for (int i = 0; i < temp.numInstances(); i++) {
        m_aggregatedPlotInstances.add(temp.get(i));
        m_aggregatedPlotShapes.add(tmpShapes.get(i));
        m_aggregatedPlotSizes.add(tmpSizes.get(i));
      }
    }
    m_setsComplete++;

    if (m_logger != null) {
      if (m_setsComplete < maxSetNum) {
        m_logger.statusMessage(statusMessagePrefix() + "Completed ("
          + m_setsComplete + ").");
      }
    }

    // if (ce.getSetNumber() == ce.getMaxSetNumber()) {
    if (m_setsComplete == maxSetNum) {
      try {
        AggregateableClassifierErrorsPlotInstances aggPlot =
          new AggregateableClassifierErrorsPlotInstances();
        aggPlot.setInstances(testData);
        aggPlot.setPlotInstances(m_aggregatedPlotInstances);
        aggPlot.setPlotShapes(m_aggregatedPlotShapes);
        aggPlot.setPlotSizes(m_aggregatedPlotSizes);
        aggPlot
          .setPointSizeProportionalToMargin(m_errorPlotPointSizeProportionalToMargin);

        // triggers scaling of shape sizes
        aggPlot.getPlotInstances();

        String textTitle = "";
        textTitle += classifier.getClass().getName();
        String textOptions = "";
        if (classifier instanceof OptionHandler) {
          textOptions =
            Utils.joinOptions(((OptionHandler) classifier).getOptions());
        }
        textTitle =
          textTitle.substring(textTitle.lastIndexOf('.') + 1,
            textTitle.length());
        if (evalLabel != null && evalLabel.length() > 0) {
          if (!textTitle.toLowerCase().startsWith(evalLabel.toLowerCase())) {
            textTitle = evalLabel + " : " + textTitle;
          }
        }
        String resultT =
          "=== Evaluation result ===\n\n"
            + "Scheme: "
            + textTitle
            + "\n"
            + ((textOptions.length() > 0) ? "Options: " + textOptions + "\n"
              : "") + "Relation: " + testData.relationName() + "\n\n"
            + m_eval.toSummaryString();

        if (testData.classAttribute().isNominal()) {
          resultT +=
            "\n" + m_eval.toClassDetailsString() + "\n"
              + m_eval.toMatrixString();
        }

        TextEvent te =
          new TextEvent(ClassifierPerformanceEvaluator.this, resultT, textTitle);
        notifyTextListeners(te);

        // set up visualizable errors
        if (m_visualizableErrorListeners.size() > 0) {
          PlotData2D errorD = new PlotData2D(m_aggregatedPlotInstances);
          errorD.setShapeSize(m_aggregatedPlotSizes);
          errorD.setShapeType(m_aggregatedPlotShapes);
          errorD.setPlotName(textTitle + " " + textOptions);

          /*
           * PlotData2D errorD = m_PlotInstances.getPlotData( textTitle + " " +
           * textOptions);
           */
          VisualizableErrorEvent vel =
            new VisualizableErrorEvent(ClassifierPerformanceEvaluator.this,
              errorD);
          notifyVisualizableErrorListeners(vel);
          m_PlotInstances.cleanUp();
        }

        if (testData.classAttribute().isNominal()
          && m_thresholdListeners.size() > 0) {
          ThresholdCurve tc = new ThresholdCurve();
          Instances result = tc.getCurve(m_eval.predictions(), 0);
          result.setRelationName(testData.relationName());
          PlotData2D pd = new PlotData2D(result);
          String htmlTitle = "" + textTitle;
          String newOptions = "";
          if (classifier instanceof OptionHandler) {
            String[] options = ((OptionHandler) classifier).getOptions();
            if (options.length > 0) {
              for (int ii = 0; ii < options.length; ii++) {
                if (options[ii].length() == 0) {
                  continue;
                }
                if (options[ii].charAt(0) == '-'
                  && !(options[ii].charAt(1) >= '0' && options[ii].charAt(1) <= '9')) {
                  newOptions += "
"; } newOptions += options[ii]; } } } htmlTitle += " " + newOptions + "
" + " (class: " + testData.classAttribute().value(0) + ")" + "
"; pd.setPlotName(textTitle + " (class: " + testData.classAttribute().value(0) + ")"); pd.setPlotNameHTML(htmlTitle); boolean[] connectPoints = new boolean[result.numInstances()]; for (int jj = 1; jj < connectPoints.length; jj++) { connectPoints[jj] = true; } pd.setConnectPoints(connectPoints); ThresholdDataEvent rde = new ThresholdDataEvent(ClassifierPerformanceEvaluator.this, pd, testData.classAttribute()); notifyThresholdListeners(rde); } if (m_logger != null) { m_logger.statusMessage(statusMessagePrefix() + "Finished."); } } catch (Exception ex) { if (m_logger != null) { m_logger.logMessage("[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " problem constructing evaluation results. " + ex.getMessage()); } ex.printStackTrace(); } finally { m_visual.setStatic(); // save memory m_PlotInstances = null; m_setsComplete = 0; m_tasks = null; m_aggregatedPlotInstances = null; } } } /** * Accept a classifier to be evaluated. * * @param ce a BatchClassifierEvent value */ @Override public void acceptClassifier(BatchClassifierEvent ce) { if (ce.getTestSet() == null || ce.getTestSet().isStructureOnly()) { return; // can't evaluate empty/non-existent test instances } Classifier classifier = ce.getClassifier(); try { if (ce.getGroupIdentifier() != m_currentBatchIdentifier) { if (m_setsComplete > 0) { if (m_logger != null) { m_logger.statusMessage(statusMessagePrefix() + "BUSY. Can't accept data " + "at this time."); m_logger.logMessage("[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " BUSY. Can't accept data at this time."); } return; } if (ce.getTrainSet().getDataSet() == null || ce.getTrainSet().getDataSet().numInstances() == 0) { // we have no training set to estimate majority class // or mean of target from Evaluation eval = new Evaluation(ce.getTestSet().getDataSet()); m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances(); m_PlotInstances.setInstances(ce.getTestSet().getDataSet()); m_PlotInstances.setClassifier(ce.getClassifier()); m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet() .classIndex()); m_PlotInstances.setEvaluation(eval); eval = adjustForInputMappedClassifier(eval, ce.getClassifier(), ce .getTestSet().getDataSet(), m_PlotInstances); eval.useNoPriors(); m_eval = new AggregateableEvaluation(eval); m_eval.setMetricsToDisplay(m_metricsList); } else { // we can set up with the training set here Evaluation eval = new Evaluation(ce.getTrainSet().getDataSet()); m_PlotInstances = ExplorerDefaults.getClassifierErrorsPlotInstances(); m_PlotInstances.setInstances(ce.getTrainSet().getDataSet()); m_PlotInstances.setClassifier(ce.getClassifier()); m_PlotInstances.setClassIndex(ce.getTestSet().getDataSet() .classIndex()); m_PlotInstances.setEvaluation(eval); eval = adjustForInputMappedClassifier(eval, ce.getClassifier(), ce .getTrainSet().getDataSet(), m_PlotInstances); m_eval = new AggregateableEvaluation(eval); m_eval.setMetricsToDisplay(m_metricsList); } m_PlotInstances.setUp(); m_currentBatchIdentifier = ce.getGroupIdentifier(); m_setsComplete = 0; m_aggregatedPlotInstances = null; String msg = "[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " starting executor pool (" + getExecutionSlots() + " slots)..."; // start the execution pool startExecutorPool(); m_tasks = new ArrayList(); if (m_logger != null) { m_logger.logMessage(msg); } else { System.out.println(msg); } } // if m_tasks == null then we've been stopped if (m_setsComplete < ce.getMaxSetNumber() && m_tasks != null) { EvaluationTask newTask = new EvaluationTask(classifier, ce.getTrainSet().getDataSet(), ce .getTestSet().getDataSet(), ce.getSetNumber(), ce.getMaxSetNumber(), ce.getLabel()); String msg = "[ClassifierPerformanceEvaluator] " + statusMessagePrefix() + " scheduling " + " evaluation of fold " + ce.getSetNumber() + " for execution..."; if (m_logger != null) { m_logger.logMessage(msg); } else { System.out.println(msg); } m_tasks.add(newTask); m_executorPool.execute(newTask); } } catch (Exception ex) { ex.printStackTrace(); // stop everything stop(); } } /** * Returns true if. at this time, the bean is busy with some (i.e. perhaps a * worker thread is performing some calculation). * * @return true if the bean is busy. */ @Override public boolean isBusy() { // return (m_evaluateThread != null); if (m_executorPool == null || (m_executorPool.getQueue().size() == 0 && m_executorPool .getActiveCount() == 0) && m_setsComplete == 0) { return false; } return true; } /** * Try and stop any action */ @SuppressWarnings("deprecation") @Override public void stop() { // tell the listenee (upstream bean) to stop if (m_listenee instanceof BeanCommon) { // System.err.println("Listener is BeanCommon"); ((BeanCommon) m_listenee).stop(); } if (m_tasks != null) { for (EvaluationTask t : m_tasks) { t.setStopped(); } } m_tasks = null; m_visual.setStatic(); m_setsComplete = 0; // shutdown the executor pool and reclaim storage if (m_executorPool != null) { m_executorPool.shutdownNow(); m_executorPool.purge(); m_executorPool = null; } // stop the evaluate thread /* * if (m_evaluateThread != null) { m_evaluateThread.interrupt(); * m_evaluateThread.stop(); m_evaluateThread = null; m_visual.setStatic(); } */ } /** * Function used to stop code that calls acceptClassifier. This is needed as * classifier evaluation is performed inside a separate thread of execution. * * @param tf a boolean value * * private synchronized void block(boolean tf) { if (tf) { try { // * only block if thread is still doing something useful! if * (m_evaluateThread != null && m_evaluateThread.isAlive()) { wait(); * } } catch (InterruptedException ex) { } } else { notifyAll(); } } */ /** * Return an enumeration of user activated requests for this bean * * @return an Enumeration value */ @Override public Enumeration enumerateRequests() { Vector newVector = new Vector(0); /* * if (m_evaluateThread != null) { newVector.addElement("Stop"); } */ if (m_executorPool != null && (m_executorPool.getQueue().size() > 0 || m_executorPool .getActiveCount() > 0)) { newVector.addElement("Stop"); } return newVector.elements(); } /** * Perform the named request * * @param request the request to perform * @exception IllegalArgumentException if an error occurs */ @Override public void performRequest(String request) { if (request.compareTo("Stop") == 0) { stop(); } else { throw new IllegalArgumentException(request + " not supported (ClassifierPerformanceEvaluator)"); } } /** * Add a text listener * * @param cl a TextListener value */ public synchronized void addTextListener(TextListener cl) { m_textListeners.addElement(cl); } /** * Remove a text listener * * @param cl a TextListener value */ public synchronized void removeTextListener(TextListener cl) { m_textListeners.remove(cl); } /** * Add a threshold data listener * * @param cl a ThresholdDataListener value */ public synchronized void addThresholdDataListener(ThresholdDataListener cl) { m_thresholdListeners.addElement(cl); } /** * Remove a Threshold data listener * * @param cl a ThresholdDataListener value */ public synchronized void removeThresholdDataListener(ThresholdDataListener cl) { m_thresholdListeners.remove(cl); } /** * Add a visualizable error listener * * @param vel a VisualizableErrorListener value */ public synchronized void addVisualizableErrorListener( VisualizableErrorListener vel) { m_visualizableErrorListeners.add(vel); } /** * Remove a visualizable error listener * * @param vel a VisualizableErrorListener value */ public synchronized void removeVisualizableErrorListener( VisualizableErrorListener vel) { m_visualizableErrorListeners.remove(vel); } /** * Notify all text listeners of a TextEvent * * @param te a TextEvent value */ @SuppressWarnings("unchecked") private void notifyTextListeners(TextEvent te) { Vector l; synchronized (this) { l = (Vector) m_textListeners.clone(); } if (l.size() > 0) { for (int i = 0; i < l.size(); i++) { // System.err.println("Notifying text listeners " // +"(ClassifierPerformanceEvaluator)"); l.elementAt(i).acceptText(te); } } } /** * Notify all ThresholdDataListeners of a ThresholdDataEvent * * @param te a ThresholdDataEvent value */ @SuppressWarnings("unchecked") private void notifyThresholdListeners(ThresholdDataEvent re) { Vector l; synchronized (this) { l = (Vector) m_thresholdListeners.clone(); } if (l.size() > 0) { for (int i = 0; i < l.size(); i++) { // System.err.println("Notifying text listeners " // +"(ClassifierPerformanceEvaluator)"); l.elementAt(i).acceptDataSet(re); } } } /** * Notify all VisualizableErrorListeners of a VisualizableErrorEvent * * @param te a VisualizableErrorEvent value */ @SuppressWarnings("unchecked") private void notifyVisualizableErrorListeners(VisualizableErrorEvent re) { Vector l; synchronized (this) { l = (Vector) m_visualizableErrorListeners .clone(); } if (l.size() > 0) { for (int i = 0; i < l.size(); i++) { // System.err.println("Notifying text listeners " // +"(ClassifierPerformanceEvaluator)"); l.elementAt(i).acceptDataSet(re); } } } /** * Returns true, if at the current time, the named event could be generated. * Assumes that supplied event names are names of events that could be * generated by this bean. * * @param eventName the name of the event in question * @return true if the named event could be generated at this point in time */ @Override public boolean eventGeneratable(String eventName) { if (m_listenee == null) { return false; } if (m_listenee instanceof EventConstraints) { if (!((EventConstraints) m_listenee).eventGeneratable("batchClassifier")) { return false; } } return true; } private String statusMessagePrefix() { return getCustomName() + "$" + hashCode() + "|"; } }