Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
weka.attributeSelection.ClassifierSubsetEval Maven / Gradle / Ivy
Go to download
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* ClassifierSubsetEval.java
* Copyright (C) 2000 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import java.io.File;
import java.util.BitSet;
import java.util.Collections;
import java.util.Enumeration;
import java.util.List;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.evaluation.AbstractEvaluationMetric;
import weka.classifiers.evaluation.InformationRetrievalEvaluationMetric;
import weka.classifiers.rules.ZeroR;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
/**
* Classifier subset evaluator:
*
* Evaluates attribute subsets on training data or a separate hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes.
*
*
* Valid options are:
*
*
-B <classifier>
* class name of the classifier to use for accuracy estimation.
* Place any classifier options LAST on the command line
* following a "--". eg.:
* -B weka.classifiers.bayes.NaiveBayes ... -- -K
* (default: weka.classifiers.rules.ZeroR)
*
* -T
* Use the training data to estimate accuracy.
*
* -H <filename>
* Name of the hold out/test set to
* estimate accuracy on.
*
* -percentage-split
* Perform a percentage split on the training data.
* Use in conjunction with -T.
*
* -P
* Split percentage to use (default = 90).
*
* -S
* Random seed for percentage split (default = 1).
*
* -E <DEFAULT|ACC|RMSE|MAE|F-MEAS|AUC|AUPRC|CORR-COEFF>
* Performance evaluation measure to use for selecting attributes.
* (Default = default: accuracy for discrete class and rmse for numeric class)
*
* -IRclass <label | index>
* Optional class value (label or 1-based index) to use in conjunction with
* IR statistics (f-meas, auc or auprc). Omitting this option will use
* the class-weighted average.
*
*
* Options specific to scheme weka.classifiers.rules.ZeroR:
*
*
* -output-debug-info
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -do-not-check-capabilities
* If set, classifier capabilities are not checked before classifier is built
* (use with caution).
*
* -num-decimal-places
* The number of decimal places for the output of numbers in the model (default 2).
*
* -batch-size
* The desired batch size for batch prediction (default 100).
*
*
* @author Mark Hall ([email protected] )
* @version $Revision: 10332 $
*/
public class ClassifierSubsetEval extends HoldOutSubsetEvaluator implements
OptionHandler, ErrorBasedMeritEvaluator {
/** for serialization */
static final long serialVersionUID = 7532217899385278710L;
/** training instances */
private Instances m_trainingInstances;
/** class index */
private int m_classIndex;
/** number of attributes in the training data */
private int m_numAttribs;
/** number of training instances */
// private int m_numInstances; NOT USED
/** holds the template classifier to use for error estimates */
private Classifier m_ClassifierTemplate = new ZeroR();
/**
* Holds the classifier used when evaluating single hold-out instances - this
* is used by RaceSearch and the trained classifier may need to persist
* between calls to that particular method.
*/
private Classifier m_Classifier = new ZeroR();
/** the file that contains hold out/test instances */
private File m_holdOutFile = new File("Click to set hold out or "
+ "test instances");
/** the instances to test on */
private Instances m_holdOutInstances;
/** evaluate on training data rather than separate hold out/test set */
private boolean m_useTraining = true;
/** Whether to hold out a percentage of the training data */
protected boolean m_usePercentageSplit;
/** Seed for randomizing prior to splitting training data */
protected int m_seed = 1;
/** The split to use if doing a percentage split */
protected String m_splitPercent = "90";
public static final int EVAL_DEFAULT = 1;
public static final int EVAL_ACCURACY = 2;
public static final int EVAL_RMSE = 3;
public static final int EVAL_MAE = 4;
public static final int EVAL_FMEASURE = 5;
public static final int EVAL_AUC = 6;
public static final int EVAL_AUPRC = 7;
public static final int EVAL_CORRELATION = 8;
public static final int EVAL_PLUGIN = 9;
protected static List PLUGIN_METRICS =
AbstractEvaluationMetric.getPluginMetrics();
/** Holds all tags for metrics */
public static final Tag[] TAGS_EVALUATION;
static {
int totalPluginCount = 0;
if (PLUGIN_METRICS != null) {
for (AbstractEvaluationMetric m : PLUGIN_METRICS) {
totalPluginCount += m.getStatisticNames().size();
}
}
TAGS_EVALUATION = new Tag[8 + totalPluginCount];
TAGS_EVALUATION[0] =
new Tag(EVAL_DEFAULT, "default",
"Default: accuracy (discrete class); RMSE (numeric class)");
TAGS_EVALUATION[1] =
new Tag(EVAL_ACCURACY, "acc", "Accuracy (discrete class only)");
TAGS_EVALUATION[2] =
new Tag(EVAL_RMSE, "rmse",
"RMSE (of the class probabilities for discrete class)");
TAGS_EVALUATION[3] =
new Tag(EVAL_MAE, "mae",
"MAE (of the class probabilities for discrete class)");
TAGS_EVALUATION[4] =
new Tag(EVAL_FMEASURE, "f-meas", "F-measure (discrete class only)");
TAGS_EVALUATION[5] =
new Tag(EVAL_AUC, "auc",
"AUC (area under the ROC curve - discrete class only)");
TAGS_EVALUATION[6] =
new Tag(EVAL_AUPRC, "auprc",
"AUPRC (area under the precision-recall curve - discrete class only)");
TAGS_EVALUATION[7] =
new Tag(EVAL_CORRELATION, "corr-coeff",
"Correlation coefficient - numeric class only");
if (PLUGIN_METRICS != null) {
int index = 8;
for (AbstractEvaluationMetric m : PLUGIN_METRICS) {
for (String stat : m.getStatisticNames()) {
TAGS_EVALUATION[index++] =
new WrapperSubsetEval.PluginTag(index + 1, m, stat);
}
}
}
}
/** The evaluation measure to use */
protected Tag m_evaluationMeasure = TAGS_EVALUATION[0];
/**
* If >= 0, and an IR metric is being used, then evaluate with respect to this
* class value (0-based index)
*/
protected int m_IRClassVal = -1;
/** User supplied option for IR class value (either name or 1-based index) */
protected String m_IRClassValS = "";
/**
* Returns a string describing this attribute evaluator
*
* @return a description of the evaluator suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "Classifier subset evaluator:\n\nEvaluates attribute subsets on training data or a separate "
+ "hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes.";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
**/
@Override
public Enumeration listOptions() {
Vector newVector = new Vector (8);
newVector.addElement(new Option(
"\tclass name of the classifier to use for accuracy estimation.\n"
+ "\tPlace any classifier options LAST on the command line\n"
+ "\tfollowing a \"--\". eg.:\n"
+ "\t\t-B weka.classifiers.bayes.NaiveBayes ... -- -K\n"
+ "\t(default: weka.classifiers.rules.ZeroR)", "B", 1,
"-B "));
newVector.addElement(new Option("\tUse the training data to estimate"
+ " accuracy.", "T", 0, "-T"));
newVector.addElement(new Option("\tName of the hold out/test set to "
+ "\n\testimate accuracy on.", "H", 1, "-H "));
newVector.addElement(new Option("\tPerform a percentage split on the "
+ "training data.\n\tUse in conjunction with -T.", "percentage-split", 0,
"-percentage-split"));
newVector.addElement(new Option(
"\tSplit percentage to use (default = 90).", "P", 1, "-P"));
newVector.addElement(new Option(
"\tRandom seed for percentage split (default = 1).", "S", 1, "-S"));
newVector.addElement(new Option(
"\tPerformance evaluation measure to use for selecting attributes.\n"
+ "\t(Default = default: accuracy for discrete class and rmse for "
+ "numeric class)", "E", 1, "-E " + Tag.toOptionList(TAGS_EVALUATION)));
newVector
.addElement(new Option(
"\tOptional class value (label or 1-based index) to use in conjunction with\n"
+ "\tIR statistics (f-meas, auc or auprc). Omitting this option will use\n"
+ "\tthe class-weighted average.", "IRclass", 1,
"-IRclass "));
newVector.addAll(Collections.list(super.listOptions()));
if ((m_ClassifierTemplate != null)
&& (m_ClassifierTemplate instanceof OptionHandler)) {
newVector.addElement(new Option("", "", 0, "\nOptions specific to "
+ "scheme " + m_ClassifierTemplate.getClass().getName() + ":"));
newVector.addAll(Collections.list(((OptionHandler) m_ClassifierTemplate)
.listOptions()));
}
return newVector.elements();
}
/**
* Parses a given list of options.
*
*
* Valid options are:
*
*
-B <classifier>
* class name of the classifier to use for accuracy estimation.
* Place any classifier options LAST on the command line
* following a "--". eg.:
* -B weka.classifiers.bayes.NaiveBayes ... -- -K
* (default: weka.classifiers.rules.ZeroR)
*
* -T
* Use the training data to estimate accuracy.
*
* -H <filename>
* Name of the hold out/test set to
* estimate accuracy on.
*
* -percentage-split
* Perform a percentage split on the training data.
* Use in conjunction with -T.
*
* -P
* Split percentage to use (default = 90).
*
* -S
* Random seed for percentage split (default = 1).
*
* -E <DEFAULT|ACC|RMSE|MAE|F-MEAS|AUC|AUPRC|CORR-COEFF>
* Performance evaluation measure to use for selecting attributes.
* (Default = default: accuracy for discrete class and rmse for numeric class)
*
* -IRclass <label | index>
* Optional class value (label or 1-based index) to use in conjunction with
* IR statistics (f-meas, auc or auprc). Omitting this option will use
* the class-weighted average.
*
*
* Options specific to scheme weka.classifiers.rules.ZeroR:
*
*
* -output-debug-info
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -do-not-check-capabilities
* If set, classifier capabilities are not checked before classifier is built
* (use with caution).
*
* -num-decimal-places
* The number of decimal places for the output of numbers in the model (default 2).
*
* -batch-size
* The desired batch size for batch prediction (default 100).
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
@Override
public void setOptions(String[] options) throws Exception {
String optionString;
resetOptions();
optionString = Utils.getOption('B', options);
if (optionString.length() == 0) {
optionString = ZeroR.class.getName();
}
setClassifier(AbstractClassifier.forName(optionString,
Utils.partitionOptions(options)));
optionString = Utils.getOption('H', options);
if (optionString.length() != 0) {
setHoldOutFile(new File(optionString));
}
setUsePercentageSplit(Utils.getFlag("percentage-split", options));
optionString = Utils.getOption('P', options);
if (optionString.length() > 0) {
setSplitPercent(optionString);
}
setUseTraining(Utils.getFlag('T', options));
optionString = Utils.getOption('E', options);
if (optionString.length() != 0) {
for (Tag t : TAGS_EVALUATION) {
if (t.getIDStr().equalsIgnoreCase(optionString)) {
setEvaluationMeasure(new SelectedTag(t.getIDStr(), TAGS_EVALUATION));
break;
}
}
}
optionString = Utils.getOption("IRClass", options);
if (optionString.length() > 0) {
setIRClassValue(optionString);
}
optionString = Utils.getOption("S", options);
if (optionString.length() > 0) {
setSeed(Integer.parseInt(optionString));
}
super.setOptions(options);
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String seedTipText() {
return "The random seed to use for randomizing the training data "
+ "prior to performing a percentage split";
}
/**
* Set the random seed used to randomize the data before performing a
* percentage split
*
* @param s the seed to use
*/
public void setSeed(int s) {
m_seed = s;
}
/**
* Get the random seed used to randomize the data before performing a
* percentage split
*
* @return the seed to use
*/
public int getSeed() {
return m_seed;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String usePercentageSplitTipText() {
return "Evaluate using a percentage split on the training data";
}
/**
* Set whether to perform a percentage split on the training data for
* evaluation
*
* @param p true if a percentage split is to be performed
*/
public void setUsePercentageSplit(boolean p) {
m_usePercentageSplit = p;
}
/**
* Get whether to perform a percentage split on the training data for
* evaluation
*
* @return true if a percentage split is to be performed
*/
public boolean getUsePercentageSplit() {
return m_usePercentageSplit;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String splitPercentTipText() {
return "The percentage split to use";
}
/**
* Set the split percentage to use
*
* @param sp the split percentage to use
*/
public void setSplitPercent(String sp) {
m_splitPercent = sp;
}
/**
* Get the split percentage to use
*
* @return the split percentage to use
*/
public String getSplitPercent() {
return m_splitPercent;
}
/**
* Set the class value (label or index) to use with IR metric evaluation of
* subsets. Leaving this unset will result in the class weighted average for
* the IR metric being used.
*
* @param val the class label or 1-based index of the class label to use when
* evaluating subsets with an IR metric
*/
public void setIRClassValue(String val) {
m_IRClassValS = val;
}
/**
* Get the class value (label or index) to use with IR metric evaluation of
* subsets. Leaving this unset will result in the class weighted average for
* the IR metric being used.
*
* @return the class label or 1-based index of the class label to use when
* evaluating subsets with an IR metric
*/
public String getIRClassValue() {
return m_IRClassValS;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String IRClassValueTipText() {
return "The class label, or 1-based index of the class label, to use "
+ "when evaluating subsets with an IR metric (such as f-measure "
+ "or AUC. Leaving this unset will result in the class frequency "
+ "weighted average of the metric being used.";
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String evaluationMeasureTipText() {
return "The measure used to evaluate the performance of attribute combinations.";
}
/**
* Gets the currently set performance evaluation measure used for selecting
* attributes for the decision table
*
* @return the performance evaluation measure
*/
public SelectedTag getEvaluationMeasure() {
return new SelectedTag(m_evaluationMeasure.getIDStr(), TAGS_EVALUATION);
}
/**
* Sets the performance evaluation measure to use for selecting attributes for
* the decision table
*
* @param newMethod the new performance evaluation metric to use
*/
public void setEvaluationMeasure(SelectedTag newMethod) {
if (newMethod.getTags() == TAGS_EVALUATION) {
m_evaluationMeasure = newMethod.getSelectedTag();
}
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String classifierTipText() {
return "Classifier to use for estimating the accuracy of subsets";
}
/**
* Set the classifier to use for accuracy estimation
*
* @param newClassifier the Classifier to use.
*/
public void setClassifier(Classifier newClassifier) {
m_ClassifierTemplate = newClassifier;
m_Classifier = newClassifier;
}
/**
* Get the classifier used as the base learner.
*
* @return the classifier used as the classifier
*/
public Classifier getClassifier() {
return m_ClassifierTemplate;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String holdOutFileTipText() {
return "File containing hold out/test instances.";
}
/**
* Gets the file that holds hold out/test instances.
*
* @return File that contains hold out instances
*/
public File getHoldOutFile() {
return m_holdOutFile;
}
/**
* Set the file that contains hold out/test instances
*
* @param h the hold out file
*/
public void setHoldOutFile(File h) {
m_holdOutFile = h;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String useTrainingTipText() {
return "Use training data instead of hold out/test instances.";
}
/**
* Get if training data is to be used instead of hold out/test data
*
* @return true if training data is to be used instead of hold out data
*/
public boolean getUseTraining() {
return m_useTraining;
}
/**
* Set if training data is to be used instead of hold out/test data
*
* @param t true if training data is to be used instead of hold out data
*/
public void setUseTraining(boolean t) {
m_useTraining = t;
}
/**
* Gets the current settings of ClassifierSubsetEval
*
* @return an array of strings suitable for passing to setOptions()
*/
@Override
public String[] getOptions() {
Vector options = new Vector();
if (getClassifier() != null) {
options.add("-B");
options.add(getClassifier().getClass().getName());
}
if (getUseTraining()) {
options.add("-T");
}
options.add("-H");
options.add(getHoldOutFile().getPath());
if (getUsePercentageSplit()) {
options.add("-percentage-split");
options.add("-P");
options.add(m_splitPercent);
options.add("-S");
options.add("" + getSeed());
}
options.add("-E");
options.add(m_evaluationMeasure.getIDStr());
if (m_IRClassValS != null && m_IRClassValS.length() > 0) {
options.add("-IRClass");
options.add(m_IRClassValS);
}
Collections.addAll(options, super.getOptions());
if ((m_ClassifierTemplate != null)
&& (m_ClassifierTemplate instanceof OptionHandler)) {
String[] classifierOptions =
((OptionHandler) m_ClassifierTemplate).getOptions();
if (classifierOptions.length > 0) {
options.add("--");
Collections.addAll(options, classifierOptions);
}
}
return options.toArray(new String[0]);
}
/**
* Returns the capabilities of this evaluator.
*
* @return the capabilities of this evaluator
* @see Capabilities
*/
@Override
public Capabilities getCapabilities() {
Capabilities result;
if (getClassifier() == null) {
result = super.getCapabilities();
result.disableAll();
} else {
result = getClassifier().getCapabilities();
}
// set dependencies
for (Capability cap : Capability.values()) {
result.enableDependency(cap);
}
return result;
}
/**
* Generates a attribute evaluator. Has to initialize all fields of the
* evaluator that are not being set via options.
*
* @param data set of instances serving as training data
* @throws Exception if the evaluator has not been generated successfully
*/
@Override
public void buildEvaluator(Instances data) throws Exception {
// can evaluator handle data?
getCapabilities().testWithFail(data);
m_trainingInstances = new Instances(data);
m_classIndex = m_trainingInstances.classIndex();
m_numAttribs = m_trainingInstances.numAttributes();
// m_numInstances = m_trainingInstances.numInstances(); NOT USED
// load the testing data
if (!m_useTraining
&& (!getHoldOutFile().getPath().startsWith("Click to set"))) {
java.io.Reader r =
new java.io.BufferedReader(new java.io.FileReader(getHoldOutFile()
.getPath()));
m_holdOutInstances = new Instances(r);
m_holdOutInstances.setClassIndex(m_trainingInstances.classIndex());
if (m_trainingInstances.equalHeaders(m_holdOutInstances) == false) {
throw new Exception("Hold out/test set is not compatable with "
+ "training data.\n"
+ m_trainingInstances.equalHeadersMsg(m_holdOutInstances));
}
} else if (m_usePercentageSplit) {
int splitPercentage = 90; // default
try {
splitPercentage = Integer.parseInt(m_splitPercent);
} catch (NumberFormatException n) {
}
m_trainingInstances.randomize(new Random(m_seed));
int trainSize =
Math.round(m_trainingInstances.numInstances() * splitPercentage / 100);
int testSize = m_trainingInstances.numInstances() - trainSize;
m_holdOutInstances =
new Instances(m_trainingInstances, trainSize, testSize);
m_trainingInstances = new Instances(m_trainingInstances, 0, trainSize);
}
if (m_IRClassValS != null && m_IRClassValS.length() > 0) {
// try to parse as a number first
try {
m_IRClassVal = Integer.parseInt(m_IRClassValS);
// make zero-based
m_IRClassVal--;
} catch (NumberFormatException e) {
// now try as a named class label
m_IRClassVal =
m_trainingInstances.classAttribute().indexOfValue(m_IRClassValS);
}
}
}
/**
* Evaluates a subset of attributes
*
* @param subset a bitset representing the attribute subset to be evaluated
* @return the error rate
* @throws Exception if the subset could not be evaluated
*/
@Override
public double evaluateSubset(BitSet subset) throws Exception {
int i, j;
double evalMetric = 0;
int numAttributes = 0;
Instances trainCopy = null;
Instances testCopy = null;
String[] cOpts = null;
Evaluation evaluation = null;
if (m_ClassifierTemplate instanceof OptionHandler) {
cOpts = ((OptionHandler) m_ClassifierTemplate).getOptions();
}
Classifier classifier =
AbstractClassifier.forName(m_ClassifierTemplate.getClass().getName(),
cOpts);
Remove delTransform = new Remove();
delTransform.setInvertSelection(true);
// copy the training instances
trainCopy = new Instances(m_trainingInstances);
if (!m_useTraining) {
if (m_holdOutInstances == null) {
throw new Exception("Must specify a set of hold out/test instances "
+ "with -H");
}
// copy the test instances
testCopy = new Instances(m_holdOutInstances);
} else if (m_usePercentageSplit) {
testCopy = new Instances(m_holdOutInstances);
}
// count attributes set in the BitSet
for (i = 0; i < m_numAttribs; i++) {
if (subset.get(i)) {
numAttributes++;
}
}
// set up an array of attribute indexes for the filter (+1 for the class)
int[] featArray = new int[numAttributes + 1];
for (i = 0, j = 0; i < m_numAttribs; i++) {
if (subset.get(i)) {
featArray[j++] = i;
}
}
featArray[j] = m_classIndex;
delTransform.setAttributeIndicesArray(featArray);
delTransform.setInputFormat(trainCopy);
trainCopy = Filter.useFilter(trainCopy, delTransform);
if (!m_useTraining || m_usePercentageSplit) {
testCopy = Filter.useFilter(testCopy, delTransform);
}
// build the classifier
classifier.buildClassifier(trainCopy);
evaluation = new Evaluation(trainCopy);
if (!m_useTraining || m_usePercentageSplit) {
evaluation.evaluateModel(classifier, testCopy);
} else {
evaluation.evaluateModel(classifier, trainCopy);
}
String metricName = null;
String statName = null;
AbstractEvaluationMetric pluginMetric = null;
switch (m_evaluationMeasure.getID()) {
case EVAL_DEFAULT:
evalMetric = evaluation.errorRate();
break;
case EVAL_ACCURACY:
evalMetric = evaluation.errorRate();
break;
case EVAL_RMSE:
evalMetric = evaluation.rootMeanSquaredError();
break;
case EVAL_MAE:
evalMetric = evaluation.meanAbsoluteError();
break;
case EVAL_FMEASURE:
if (m_IRClassVal < 0) {
evalMetric = evaluation.weightedFMeasure();
} else {
evalMetric = evaluation.fMeasure(m_IRClassVal);
}
break;
case EVAL_AUC:
if (m_IRClassVal < 0) {
evalMetric = evaluation.weightedAreaUnderROC();
} else {
evalMetric = evaluation.areaUnderROC(m_IRClassVal);
}
break;
case EVAL_AUPRC:
if (m_IRClassVal < 0) {
evalMetric = evaluation.weightedAreaUnderPRC();
} else {
evalMetric = evaluation.areaUnderPRC(m_IRClassVal);
}
case EVAL_CORRELATION:
evalMetric = evaluation.correlationCoefficient();
break;
default:
if (m_evaluationMeasure.getID() >= EVAL_PLUGIN) {
metricName =
((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getMetricName();
statName =
((WrapperSubsetEval.PluginTag) m_evaluationMeasure)
.getStatisticName();
statName =
((WrapperSubsetEval.PluginTag) m_evaluationMeasure)
.getStatisticName();
pluginMetric = evaluation.getPluginMetric(metricName);
if (pluginMetric == null) {
throw new Exception("Metric " + metricName + " does not seem to be "
+ "available");
}
}
if (pluginMetric instanceof InformationRetrievalEvaluationMetric) {
if (m_IRClassVal < 0) {
evalMetric =
((InformationRetrievalEvaluationMetric) pluginMetric)
.getClassWeightedAverageStatistic(statName);
} else {
evalMetric =
((InformationRetrievalEvaluationMetric) pluginMetric).getStatistic(
statName, m_IRClassVal);
}
} else {
evalMetric = pluginMetric.getStatistic(statName);
}
break;
}
switch (m_evaluationMeasure.getID()) {
case EVAL_DEFAULT:
case EVAL_ACCURACY:
case EVAL_RMSE:
case EVAL_MAE:
if (m_trainingInstances.classAttribute().isNominal()
&& (m_evaluationMeasure.getID() == EVAL_DEFAULT || m_evaluationMeasure
.getID() == EVAL_ACCURACY)) {
evalMetric = 1 - evalMetric;
} else {
evalMetric = -evalMetric; // maximize
}
break;
default:
if (pluginMetric != null
&& !pluginMetric.statisticIsMaximisable(statName)) {
evalMetric = -evalMetric; // maximize
}
}
return evalMetric;
}
/**
* Evaluates a subset of attributes with respect to a set of instances.
* Calling this function overrides any test/hold out instances set from
* setHoldOutFile.
*
* @param subset a bitset representing the attribute subset to be evaluated
* @param holdOut a set of instances (possibly separate and distinct from
* those use to build/train the evaluator) with which to evaluate the
* merit of the subset
* @return the "merit" of the subset on the holdOut data
* @throws Exception if the subset cannot be evaluated
*/
public double evaluateSubset(BitSet subset, Instances holdOut)
throws Exception {
int i, j;
double evalMetric = 0;
int numAttributes = 0;
Instances trainCopy = null;
Instances testCopy = null;
String[] cOpts = null;
Evaluation evaluation = null;
if (m_ClassifierTemplate instanceof OptionHandler) {
cOpts = ((OptionHandler) m_ClassifierTemplate).getOptions();
}
Classifier classifier =
AbstractClassifier.forName(m_ClassifierTemplate.getClass().getName(),
cOpts);
if (m_trainingInstances.equalHeaders(holdOut) == false) {
throw new Exception("evaluateSubset : Incompatable instance types.\n"
+ m_trainingInstances.equalHeadersMsg(holdOut));
}
Remove delTransform = new Remove();
delTransform.setInvertSelection(true);
// copy the training instances
trainCopy = new Instances(m_trainingInstances);
testCopy = new Instances(holdOut);
// count attributes set in the BitSet
for (i = 0; i < m_numAttribs; i++) {
if (subset.get(i)) {
numAttributes++;
}
}
// set up an array of attribute indexes for the filter (+1 for the class)
int[] featArray = new int[numAttributes + 1];
for (i = 0, j = 0; i < m_numAttribs; i++) {
if (subset.get(i)) {
featArray[j++] = i;
}
}
featArray[j] = m_classIndex;
delTransform.setAttributeIndicesArray(featArray);
delTransform.setInputFormat(trainCopy);
trainCopy = Filter.useFilter(trainCopy, delTransform);
testCopy = Filter.useFilter(testCopy, delTransform);
// build the classifier
classifier.buildClassifier(trainCopy);
evaluation = new Evaluation(trainCopy);
evaluation.evaluateModel(classifier, testCopy);
String metricName = null;
String statName = null;
AbstractEvaluationMetric pluginMetric = null;
switch (m_evaluationMeasure.getID()) {
case EVAL_DEFAULT:
evalMetric = evaluation.errorRate();
break;
case EVAL_ACCURACY:
evalMetric = evaluation.errorRate();
break;
case EVAL_RMSE:
evalMetric = evaluation.rootMeanSquaredError();
break;
case EVAL_MAE:
evalMetric = evaluation.meanAbsoluteError();
break;
case EVAL_FMEASURE:
if (m_IRClassVal < 0) {
evalMetric = evaluation.weightedFMeasure();
} else {
evalMetric = evaluation.fMeasure(m_IRClassVal);
}
break;
case EVAL_AUC:
if (m_IRClassVal < 0) {
evalMetric = evaluation.weightedAreaUnderROC();
} else {
evalMetric = evaluation.areaUnderROC(m_IRClassVal);
}
break;
case EVAL_AUPRC:
if (m_IRClassVal < 0) {
evalMetric = evaluation.weightedAreaUnderPRC();
} else {
evalMetric = evaluation.areaUnderPRC(m_IRClassVal);
}
case EVAL_CORRELATION:
evalMetric = evaluation.correlationCoefficient();
break;
default:
if (m_evaluationMeasure.getID() >= EVAL_PLUGIN) {
metricName =
((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getMetricName();
statName =
((WrapperSubsetEval.PluginTag) m_evaluationMeasure)
.getStatisticName();
statName =
((WrapperSubsetEval.PluginTag) m_evaluationMeasure)
.getStatisticName();
pluginMetric = evaluation.getPluginMetric(metricName);
if (pluginMetric == null) {
throw new Exception("Metric " + metricName + " does not seem to be "
+ "available");
}
}
if (pluginMetric instanceof InformationRetrievalEvaluationMetric) {
if (m_IRClassVal < 0) {
evalMetric =
((InformationRetrievalEvaluationMetric) pluginMetric)
.getClassWeightedAverageStatistic(statName);
} else {
evalMetric =
((InformationRetrievalEvaluationMetric) pluginMetric).getStatistic(
statName, m_IRClassVal);
}
} else {
evalMetric = pluginMetric.getStatistic(statName);
}
break;
}
switch (m_evaluationMeasure.getID()) {
case EVAL_DEFAULT:
case EVAL_ACCURACY:
case EVAL_RMSE:
case EVAL_MAE:
if (m_trainingInstances.classAttribute().isNominal()
&& (m_evaluationMeasure.getID() == EVAL_DEFAULT || m_evaluationMeasure
.getID() == EVAL_ACCURACY)) {
evalMetric = 1 - evalMetric;
} else {
evalMetric = -evalMetric; // maximize
}
break;
default:
if (pluginMetric != null
&& !pluginMetric.statisticIsMaximisable(statName)) {
evalMetric = -evalMetric; // maximize
}
}
return evalMetric;
}
/**
* Evaluates a subset of attributes with respect to a single instance. Calling
* this function overides any hold out/test instances set through
* setHoldOutFile.
*
* @param subset a bitset representing the attribute subset to be evaluated
* @param holdOut a single instance (possibly not one of those used to
* build/train the evaluator) with which to evaluate the merit of the
* subset
* @param retrain true if the classifier should be retrained with respect to
* the new subset before testing on the holdOut instance.
* @return the "merit" of the subset on the holdOut instance
* @throws Exception if the subset cannot be evaluated
*/
@Override
public double
evaluateSubset(BitSet subset, Instance holdOut, boolean retrain)
throws Exception {
if (m_evaluationMeasure.getID() != EVAL_DEFAULT) {
throw new Exception(
"Can only use default evaluation measure in the method");
}
int i, j;
double error;
int numAttributes = 0;
Instances trainCopy = null;
Instance testCopy = null;
if (m_trainingInstances.equalHeaders(holdOut.dataset()) == false) {
throw new Exception("evaluateSubset : Incompatable instance types.\n"
+ m_trainingInstances.equalHeadersMsg(holdOut.dataset()));
}
Remove delTransform = new Remove();
delTransform.setInvertSelection(true);
// copy the training instances
trainCopy = new Instances(m_trainingInstances);
testCopy = (Instance) holdOut.copy();
// count attributes set in the BitSet
for (i = 0; i < m_numAttribs; i++) {
if (subset.get(i)) {
numAttributes++;
}
}
// set up an array of attribute indexes for the filter (+1 for the class)
int[] featArray = new int[numAttributes + 1];
for (i = 0, j = 0; i < m_numAttribs; i++) {
if (subset.get(i)) {
featArray[j++] = i;
}
}
featArray[j] = m_classIndex;
delTransform.setAttributeIndicesArray(featArray);
delTransform.setInputFormat(trainCopy);
if (retrain) {
trainCopy = Filter.useFilter(trainCopy, delTransform);
// build the classifier
m_Classifier.buildClassifier(trainCopy);
}
delTransform.input(testCopy);
testCopy = delTransform.output();
double pred;
double[] distrib;
distrib = m_Classifier.distributionForInstance(testCopy);
if (m_trainingInstances.classAttribute().isNominal()) {
pred = distrib[(int) testCopy.classValue()];
} else {
pred = distrib[0];
}
if (m_trainingInstances.classAttribute().isNominal()) {
error = 1.0 - pred;
} else {
error = testCopy.classValue() - pred;
}
// return the negative of the error as search methods need to
// maximize something
return -error;
}
/**
* Returns a string describing classifierSubsetEval
*
* @return the description as a string
*/
@Override
public String toString() {
StringBuffer text = new StringBuffer();
if (m_trainingInstances == null) {
text.append("\tClassifier subset evaluator has not been built yet\n");
} else {
text.append("\tClassifier Subset Evaluator\n");
text.append("\tLearning scheme: " + getClassifier().getClass().getName()
+ "\n");
text.append("\tScheme options: ");
String[] classifierOptions = new String[0];
if (m_ClassifierTemplate instanceof OptionHandler) {
classifierOptions = ((OptionHandler) m_ClassifierTemplate).getOptions();
for (String classifierOption : classifierOptions) {
text.append(classifierOption + " ");
}
}
text.append("\n");
text.append("\tHold out/test set: ");
if (!m_useTraining) {
if (getHoldOutFile().getPath().startsWith("Click to set")) {
text.append("none\n");
} else {
text.append(getHoldOutFile().getPath() + '\n');
}
} else {
if (m_usePercentageSplit) {
text.append("Percentage split: " + m_splitPercent + "\n");
} else {
text.append("Training data\n");
}
}
String IRClassL = "";
if (m_IRClassVal >= 0) {
IRClassL =
"(class value: "
+ m_trainingInstances.classAttribute().value(m_IRClassVal) + ")";
}
switch (m_evaluationMeasure.getID()) {
case EVAL_DEFAULT:
case EVAL_ACCURACY:
if (m_trainingInstances.attribute(m_classIndex).isNumeric()) {
text.append("\tSubset evaluation: RMSE\n");
} else {
text.append("\tSubset evaluation: classification error\n");
}
break;
case EVAL_RMSE:
if (m_trainingInstances.attribute(m_classIndex).isNumeric()) {
text.append("\tSubset evaluation: RMSE\n");
} else {
text.append("\tSubset evaluation: RMSE (probability estimates)\n");
}
break;
case EVAL_MAE:
if (m_trainingInstances.attribute(m_classIndex).isNumeric()) {
text.append("\tSubset evaluation: MAE\n");
} else {
text.append("\tSubset evaluation: MAE (probability estimates)\n");
}
break;
case EVAL_FMEASURE:
text.append("\tSubset evaluation: F-measure "
+ (m_IRClassVal >= 0 ? IRClassL : "") + "\n");
break;
case EVAL_AUC:
text.append("\tSubset evaluation: area under the ROC curve "
+ (m_IRClassVal >= 0 ? IRClassL : "") + "\n");
break;
case EVAL_AUPRC:
text.append("\tSubset evalation: area under the precision-recal curve "
+ (m_IRClassVal >= 0 ? IRClassL : "") + "\n");
break;
case EVAL_CORRELATION:
text.append("\tSubset evaluation: correlation coefficient\n");
break;
default:
text
.append("\tSubset evaluation: " + m_evaluationMeasure.getReadable());
if (((WrapperSubsetEval.PluginTag) m_evaluationMeasure).getMetric() instanceof InformationRetrievalEvaluationMetric) {
text.append(" " + (m_IRClassVal > 0 ? IRClassL : ""));
}
text.append("\n");
break;
}
}
return text.toString();
}
/**
* reset to defaults
*/
protected void resetOptions() {
m_trainingInstances = null;
m_ClassifierTemplate = new ZeroR();
m_holdOutFile = new File("Click to set hold out or test instances");
m_holdOutInstances = null;
m_useTraining = false;
m_splitPercent = "90";
m_usePercentageSplit = false;
m_evaluationMeasure = TAGS_EVALUATION[0];
m_IRClassVal = -1;
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 10332 $");
}
/**
* Main method for testing this class.
*
* @param args the options
*/
public static void main(String[] args) {
runEvaluator(new ClassifierSubsetEval(), args);
}
}