All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.SingleClassifierEnhancer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    SingleClassifierEnhancer.java
 *    Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.rules.ZeroR;
import weka.core.*;
import weka.core.Capabilities.Capability;

/**
 * Abstract utility class for handling settings common to meta
 * classifiers that use a single base learner.
 *
 * @author Eibe Frank ([email protected])
 * @version $Revision: 15520 $
 */
public abstract class SingleClassifierEnhancer extends AbstractClassifier {

  /** for serialization */
  private static final long serialVersionUID = -3665885256363525164L;

  /** The base classifier to use */
  protected Classifier m_Classifier = new ZeroR();

  /**
   * String describing default classifier.
   */
  protected String defaultClassifierString() {

    return "weka.classifiers.rules.ZeroR";
  }

  /**
   * String describing options for default classifier.
   */
  protected String[] defaultClassifierOptions() {

    return new String[0];
  }

  /**
   * Returns an enumeration describing the available options.
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String classifierName = Utils.getOption('W', options); if (classifierName.length() > 0) { setClassifier(AbstractClassifier.forName(classifierName, null)); setClassifier(AbstractClassifier.forName(classifierName, Utils.partitionOptions(options))); } else { setClassifier(AbstractClassifier.forName(defaultClassifierString(), null)); String[] classifierOptions = Utils.partitionOptions(options); if (classifierOptions.length > 0) { setClassifier(AbstractClassifier.forName(defaultClassifierString(), classifierOptions)); } else { setClassifier(AbstractClassifier.forName(defaultClassifierString(), defaultClassifierOptions())); } } super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { Vector options = new Vector(); options.add("-W"); options.add(getClassifier().getClass().getName()); Collections.addAll(options, super.getOptions()); String[] classifierOptions = ((OptionHandler)m_Classifier).getOptions(); if (classifierOptions.length > 0) { options.add("--"); Collections.addAll(options, classifierOptions); } return options.toArray(new String[0]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classifierTipText() { return "The base classifier to be used."; } /** * Returns default capabilities of the base classifier. * * @return the capabilities of the base classifier */ public Capabilities getCapabilities() { Capabilities result; if (getClassifier() != null) { result = getClassifier().getCapabilities(); } else { result = new Capabilities(this); result.disableAll(); } // set dependencies for (Capability cap: Capability.values()) result.enableDependency(cap); result.setOwner(this); return result; } /** * Set the base learner. * * @param newClassifier the classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the base learner. * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Gets the classifier specification string, which contains the class name of * the classifier and any options to the classifier * * @return the classifier string */ protected String getClassifierSpec() { Classifier c = getClassifier(); return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)c).getOptions()); } @Override public void preExecution() throws Exception { if (getClassifier() instanceof CommandlineRunnable) { ((CommandlineRunnable) getClassifier()).preExecution(); } } @Override public void postExecution() throws Exception { if (getClassifier() instanceof CommandlineRunnable) { ((CommandlineRunnable) getClassifier()).postExecution(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy