weka.classifiers.evaluation.MarginCurve Maven / Gradle / Ivy
Show all versions of weka-stable Show documentation
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MarginCurve.java
* Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import java.util.ArrayList;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Generates points illustrating the prediction margin. The margin is defined as
* the difference between the probability predicted for the actual class and the
* highest probability predicted for the other classes. One hypothesis as to the
* good performance of boosting algorithms is that they increaes the margins on
* the training data and this gives better performance on test data.
*
* @author Len Trigg ([email protected])
* @version $Revision: 10153 $
*/
public class MarginCurve implements RevisionHandler {
/**
* Calculates the cumulative margin distribution for the set of predictions,
* returning the result as a set of Instances. The structure of these
* Instances is as follows:
*
*
* - Margin contains the margin value (which should be plotted as an
* x-coordinate)
*
- Current contains the count of instances with the current margin
* (plot as y axis)
*
- Cumulative contains the count of instances with margin less than
* or equal to the current margin (plot as y axis)
*
*
*
* @return datapoints as a set of instances, null if no predictions have been
* made.
*/
public Instances getCurve(ArrayList predictions) {
if (predictions.size() == 0) {
return null;
}
Instances insts = makeHeader();
double[] margins = getMargins(predictions);
int[] sorted = Utils.sort(margins);
int binMargin = 0;
int totalMargin = 0;
insts.add(makeInstance(-1, binMargin, totalMargin));
for (int element : sorted) {
double current = margins[element];
double weight = ((NominalPrediction) predictions.get(element)).weight();
totalMargin += weight;
binMargin += weight;
if (true) {
insts.add(makeInstance(current, binMargin, totalMargin));
binMargin = 0;
}
}
return insts;
}
/**
* Pulls all the margin values out of a vector of NominalPredictions.
*
* @param predictions a FastVector containing NominalPredictions
* @return an array of margin values.
*/
private double[] getMargins(ArrayList predictions) {
// sort by predicted probability of the desired class.
double[] margins = new double[predictions.size()];
for (int i = 0; i < margins.length; i++) {
NominalPrediction pred = (NominalPrediction) predictions.get(i);
margins[i] = pred.margin();
}
return margins;
}
/**
* Creates an Instances object with the attributes we will be calculating.
*
* @return the Instances structure.
*/
private Instances makeHeader() {
ArrayList fv = new ArrayList();
fv.add(new Attribute("Margin"));
fv.add(new Attribute("Current"));
fv.add(new Attribute("Cumulative"));
return new Instances("MarginCurve", fv, 100);
}
/**
* Creates an Instance object with the attributes calculated.
*
* @param margin the margin for this data point.
* @param current the number of instances with this margin.
* @param cumulative the number of instances with margin less than or equal to
* this margin.
* @return the Instance object.
*/
private Instance makeInstance(double margin, int current, int cumulative) {
int count = 0;
double[] vals = new double[3];
vals[count++] = margin;
vals[count++] = current;
vals[count++] = cumulative;
return new DenseInstance(1.0, vals);
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 10153 $");
}
/**
* Tests the MarginCurve generation from the command line. The classifier is
* currently hardcoded. Pipe in an arff file.
*
* @param args currently ignored
*/
public static void main(String[] args) {
try {
Utils.SMALL = 0;
Instances inst = new Instances(new java.io.InputStreamReader(System.in));
inst.setClassIndex(inst.numAttributes() - 1);
MarginCurve tc = new MarginCurve();
EvaluationUtils eu = new EvaluationUtils();
weka.classifiers.meta.LogitBoost classifier = new weka.classifiers.meta.LogitBoost();
classifier.setNumIterations(20);
ArrayList predictions = eu.getTrainTestPredictions(
classifier, inst, inst);
Instances result = tc.getCurve(predictions);
System.out.println(result);
} catch (Exception ex) {
ex.printStackTrace();
}
}
}