All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.evaluation.MarginCurve Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    MarginCurve.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.evaluation;

import java.util.ArrayList;

import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 * Generates points illustrating the prediction margin. The margin is defined as
 * the difference between the probability predicted for the actual class and the
 * highest probability predicted for the other classes. One hypothesis as to the
 * good performance of boosting algorithms is that they increaes the margins on
 * the training data and this gives better performance on test data.
 * 
 * @author Len Trigg ([email protected])
 * @version $Revision: 10153 $
 */
public class MarginCurve implements RevisionHandler {

  /**
   * Calculates the cumulative margin distribution for the set of predictions,
   * returning the result as a set of Instances. The structure of these
   * Instances is as follows:
   * 

*

    *
  • Margin contains the margin value (which should be plotted as an * x-coordinate) *
  • Current contains the count of instances with the current margin * (plot as y axis) *
  • Cumulative contains the count of instances with margin less than * or equal to the current margin (plot as y axis) *
*

* * @return datapoints as a set of instances, null if no predictions have been * made. */ public Instances getCurve(ArrayList predictions) { if (predictions.size() == 0) { return null; } Instances insts = makeHeader(); double[] margins = getMargins(predictions); int[] sorted = Utils.sort(margins); int binMargin = 0; int totalMargin = 0; insts.add(makeInstance(-1, binMargin, totalMargin)); for (int element : sorted) { double current = margins[element]; double weight = ((NominalPrediction) predictions.get(element)).weight(); totalMargin += weight; binMargin += weight; if (true) { insts.add(makeInstance(current, binMargin, totalMargin)); binMargin = 0; } } return insts; } /** * Pulls all the margin values out of a vector of NominalPredictions. * * @param predictions a FastVector containing NominalPredictions * @return an array of margin values. */ private double[] getMargins(ArrayList predictions) { // sort by predicted probability of the desired class. double[] margins = new double[predictions.size()]; for (int i = 0; i < margins.length; i++) { NominalPrediction pred = (NominalPrediction) predictions.get(i); margins[i] = pred.margin(); } return margins; } /** * Creates an Instances object with the attributes we will be calculating. * * @return the Instances structure. */ private Instances makeHeader() { ArrayList fv = new ArrayList(); fv.add(new Attribute("Margin")); fv.add(new Attribute("Current")); fv.add(new Attribute("Cumulative")); return new Instances("MarginCurve", fv, 100); } /** * Creates an Instance object with the attributes calculated. * * @param margin the margin for this data point. * @param current the number of instances with this margin. * @param cumulative the number of instances with margin less than or equal to * this margin. * @return the Instance object. */ private Instance makeInstance(double margin, int current, int cumulative) { int count = 0; double[] vals = new double[3]; vals[count++] = margin; vals[count++] = current; vals[count++] = cumulative; return new DenseInstance(1.0, vals); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10153 $"); } /** * Tests the MarginCurve generation from the command line. The classifier is * currently hardcoded. Pipe in an arff file. * * @param args currently ignored */ public static void main(String[] args) { try { Utils.SMALL = 0; Instances inst = new Instances(new java.io.InputStreamReader(System.in)); inst.setClassIndex(inst.numAttributes() - 1); MarginCurve tc = new MarginCurve(); EvaluationUtils eu = new EvaluationUtils(); weka.classifiers.meta.LogitBoost classifier = new weka.classifiers.meta.LogitBoost(); classifier.setNumIterations(20); ArrayList predictions = eu.getTrainTestPredictions( classifier, inst, inst); Instances result = tc.getCurve(predictions); System.out.println(result); } catch (Exception ex) { ex.printStackTrace(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy