All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.VotedPerceptron Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    VotedPerceptron.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */


package weka.classifiers.functions;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 
 * Implementation of the voted perceptron algorithm by Freund and Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.
*
* For more information, see:
*
* Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998. *

* * BibTeX: *

 * @inproceedings{Freund1998,
 *    address = {New York, NY},
 *    author = {Y. Freund and R. E. Schapire},
 *    booktitle = {11th Annual Conference on Computational Learning Theory},
 *    pages = {209-217},
 *    publisher = {ACM Press},
 *    title = {Large margin classification using the perceptron algorithm},
 *    year = {1998}
 * }
 * 
*

* * Valid options are:

* *

 -I <int>
 *  The number of iterations to be performed.
 *  (default 1)
* *
 -E <double>
 *  The exponent for the polynomial kernel.
 *  (default 1)
* *
 -S <int>
 *  The seed for the random number generation.
 *  (default 1)
* *
 -M <int>
 *  The maximum number of alterations allowed.
 *  (default 10000)
* * * @author Eibe Frank ([email protected]) * @version $Revision: 15520 $ */ public class VotedPerceptron extends AbstractClassifier implements OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -1072429260104568698L; /** The maximum number of alterations to the perceptron */ private int m_MaxK = 10000; /** The number of iterations */ private int m_NumIterations = 1; /** The exponent */ private double m_Exponent = 1.0; /** The actual number of alterations */ private int m_K = 0; /** The training instances added to the perceptron */ private int[] m_Additions = null; /** Addition or subtraction? */ private boolean[] m_IsAddition = null; /** The weights for each perceptron */ private int[] m_Weights = null; /** The training instances */ private Instances m_Train = null; /** Seed used for shuffling the dataset */ private int m_Seed = 1; /** The filter used to make attributes numeric. */ private NominalToBinary m_NominalToBinary; /** The filter used to get rid of missing values. */ private ReplaceMissingValues m_ReplaceMissingValues; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implementation of the voted perceptron algorithm by Freund and " + "Schapire. Globally replaces all missing values, and transforms " + "nominal attributes into binary ones.\n\n" + "For more information, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Y. Freund and R. E. Schapire"); result.setValue(Field.TITLE, "Large margin classification using the perceptron algorithm"); result.setValue(Field.BOOKTITLE, "11th Annual Conference on Computational Learning Theory"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.PAGES, "209-217"); result.setValue(Field.PUBLISHER, "ACM Press"); result.setValue(Field.ADDRESS, "New York, NY"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration




© 2015 - 2025 Weber Informatics LLC | Privacy Policy