All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.NormalizedPolyKernel Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    NormalizedPolyKernel.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;

/**
 
 * The normalized polynomial kernel.
* K(x,y) = <x,y>/sqrt(<x,x><y,y>) where <x,y> = PolyKernel(x,y) *

* * Valid options are:

* *

 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -C <num>
 *  The size of the cache (a prime number), 0 for full cache and 
 *  -1 to turn it off.
 *  (default: 250007)
* *
 -E <num>
 *  The Exponent to use.
 *  (default: 1.0)
* *
 -L
 *  Use lower-order terms.
 *  (default: no)
* * * @author Eibe Frank ([email protected]) * @version $Revision: 15562 $ */ public class NormalizedPolyKernel extends PolyKernel { /** for serialization */ static final long serialVersionUID = 1248574185532130851L; /** A cache for the diagonal of the dot product kernel */ protected double[] m_diagDotproducts = null; /** * default constructor - does nothing */ public NormalizedPolyKernel() { super(); } /** * Creates a new NormalizedPolyKernel instance. * * @param dataset the training dataset used. * @param cacheSize the size of the cache (a prime number) * @param exponent the exponent to use * @param lowerOrder whether to use lower-order terms * @throws Exception if something goes wrong */ public NormalizedPolyKernel(Instances dataset, int cacheSize, double exponent, boolean lowerOrder) throws Exception { super(dataset, cacheSize, exponent, lowerOrder); } /** * builds the kernel with the given data. Initializes the kernel cache. The * actual size of the cache in bytes is (64 * cacheSize). * * @param data the data to base the kernel on * @throws Exception if something goes wrong */ @Override public void buildKernel(Instances data) throws Exception { super.buildKernel(data); m_diagDotproducts = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { m_diagDotproducts[i] = dotProd(m_data.instance(i), m_data.instance(i)); } } /** * Frees the cache used by the kernel. */ @Override public void clean() { super.clean(); m_diagDotproducts = null; } /** * Returns a string describing the kernel * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "The normalized polynomial kernel.\n" + "K(x,y) = /sqrt() where = PolyKernel(x,y)"; } /** * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ @Override protected double evaluate(int id1, int id2, Instance inst1) throws Exception { double result; if (id1 == id2) { return 1.0; } else { double numerator = dotProd(inst1, m_data.instance(id2)); double denom1, denom2; if (m_diagDotproducts != null) { denom2 = m_diagDotproducts[id2]; if (id1 < 0) { denom1 = dotProd(inst1, inst1); } else { denom1 = m_diagDotproducts[id1]; } } else { denom1 = dotProd(inst1, inst1); denom2 = dotProd(m_data.instance(id2), m_data.instance(id2)); } // Use lower order terms? if (m_lowerOrder) { numerator += 1.0; denom1 += 1.0; denom2 += 1.0; } double denominatorSquared = denom1 * denom2; if (denominatorSquared <= 0) { result = 0; } else { result = numerator / Math.sqrt(denominatorSquared); } } if (m_exponent != 1.0) { result = Math.pow(result, m_exponent); } return result; } /** * returns a string representation for the Kernel * * @return a string representaiton of the kernel */ public String toString() { String result; if (getUseLowerOrder()) result = "Normalized Poly Kernel with lower order: K(x,y) = (+1)^" + getExponent() + "/" + "((+1)^" + getExponent() + "*" + "(+1)^" + getExponent() + ")^(1/2)"; else result = "Normalized Poly Kernel: K(x,y) = ^" + getExponent() + "/" + "(^" + getExponent() + "*" + "^" + getExponent() + ")^(1/2)"; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 15562 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy