weka.classifiers.functions.supportVector.RBFKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* RBFKernel.java
* Copyright (C) 1999-2017 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions.supportVector;
import weka.core.*;
import weka.core.Capabilities.Capability;
/**
*
* The RBF kernel : K(x, y) = exp(-gamma*(x-y)^2)
*
*
*
*
* Valid options are:
*
*
-C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -G <double>
* The value to use for the gamma parameter (default: 0.01).
*
* -output-debug-info
* Enables debugging output (if available) to be printed.
* (default: off)
*
*
*
* @author Eibe Frank ([email protected])
* @author Shane Legg ([email protected]) (sparse vector code)
* @author Stuart Inglis ([email protected]) (sparse vector code)
* @version $Revision: 14534 $
*/
public class RBFKernel extends CachedKernel {
/** for serialization (value needs to be consistent with J. Lindgren's implementation) */
static final long serialVersionUID = 5247117544316387852L;
/** The gamma parameter for the RBF kernel. */
protected double m_gamma = 0.01;
/** The diagonal values of the dot product matrix (name needs to be consistent with J. Lindgren's implementation). */
protected double[] m_kernelPrecalc;
/**
* default constructor - does nothing.
*/
public RBFKernel() {
super();
}
/**
* Creates a new RBFKernel
instance.
*
* @param data the training dataset used.
* @param cacheSize the size of the cache (a prime number)
* @param gamma the gamma to use
* @throws Exception if something goes wrong
*/
public RBFKernel(Instances data, int cacheSize, double gamma) throws Exception {
super();
setCacheSize(cacheSize);
setGamma(gamma);
buildKernel(data);
}
/**
* Builds the kernel. Calls the super class method and then also initializes the cache for
* the diagonal of the dot product matrix.
*/
public void buildKernel(Instances data) throws Exception {
super.buildKernel(data);
m_kernelPrecalc = new double[data.numInstances()];
for (int i = 0; i < data.numInstances(); i++) {
double sum = 0;
Instance inst = data.instance(i);
for (int j = 0; j < inst.numValues(); j++) {
if (inst.index(j) != data.classIndex()) {
sum += inst.valueSparse(j) * inst.valueSparse(j);
}
}
m_kernelPrecalc[i] = sum;
}
}
/**
* Returns a string describing the kernel
*
* @return a description suitable for displaying in the explorer/experimenter
* gui
*/
@Override
public String globalInfo() {
return "The RBF kernel : K(x, y) = exp(-gamma*(x-y)^2)";
}
/**
*
* @param id1 the index of instance 1
* @param id2 the index of instance 2
* @param inst1 the instance 1 object
* @return the dot product
* @throws Exception if something goes wrong
*/
@Override
protected double evaluate(int id1, int id2, Instance inst1) throws Exception {
if (id1 == id2) {
return 1.0;
} else {
if (id1 == -1) {
return Math.exp(-m_gamma * (dotProd(inst1, inst1) - 2 * dotProd(inst1, m_data.instance(id2))
+ m_kernelPrecalc[id2]));
} else {
return Math.exp(-m_gamma * (m_kernelPrecalc[id1] - 2 * dotProd(inst1, m_data.instance(id2))
+ m_kernelPrecalc[id2]));
}
}
}
/**
* Returns the Capabilities of this kernel.
*
* @return the capabilities of this object
* @see Capabilities
*/
@Override
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enableAllClasses();
result.enable(Capability.MISSING_CLASS_VALUES);
result.enable(Capability.NO_CLASS);
return result;
}
/**
* Sets the gamma value.
*
* @param value the gamma value
*/
@OptionMetadata(description = "The value to use for the gamma parameter (default: 0.01).",
displayName = "gamma", commandLineParamName = "G",
commandLineParamSynopsis = "-G ", displayOrder = 1)
public void setGamma(double value) {
m_gamma = value;
}
/**
* Gets the gamma value.
*
* @return the gamma value
*/
public double getGamma() {
return m_gamma;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String gammaTipText() {
return "The gamma value.";
}
/**
* returns a string representation for the Kernel
*
* @return a string representaiton of the kernel
*/
@Override
public String toString() {
return "RBF Kernel: K(x,y) = exp(-" + m_gamma + "*(x-y)^2)";
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 14534 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy