All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.MultiClassClassifierUpdateable Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    MultiClassClassifierUpdateable.java
 *    Copyright (C) 2011-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import weka.classifiers.UpdateableClassifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.unsupervised.instance.RemoveWithValues;

/**
 
 * A metaclassifier for handling multi-class datasets with 2-class classifiers. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier
 * 

* * Valid options are:

* *

 -M <num>
 *  Sets the method to use. Valid values are 0 (1-against-all),
 *  1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0)
 * 
* *
 -R <num>
 *  Sets the multiplier when using random codes. (default 2.0)
* *
 -P
 *  Use pairwise coupling (only has an effect for 1-against1)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.functions.SGD)
* * * @author Eibe Frank ([email protected]) * @author Len Trigg ([email protected]) * @author Richard Kirkby ([email protected]) * @author Mark Hall (mhall{[at]}pentaho{[dot]}com) * * @version $Revision: 9248 $ */ public class MultiClassClassifierUpdateable extends MultiClassClassifier implements OptionHandler, UpdateableClassifier { /** For serialization */ private static final long serialVersionUID = -1619685269774366430L; /** * Constructor */ public MultiClassClassifierUpdateable() { m_Classifier = new weka.classifiers.functions.SGD(); } /** * @return a description of the classifier suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return "A metaclassifier for handling multi-class datasets with 2-class " + "classifiers. This classifier is also capable of " + "applying error correcting output codes for increased accuracy. " + "The base classifier must be an updateable classifier"; } @Override public void buildClassifier(Instances insts) throws Exception { if (m_Classifier == null) { throw new Exception("No base classifier has been set!"); } if (!(m_Classifier instanceof UpdateableClassifier)) { throw new Exception("Base classifier must be updateable!"); } super.buildClassifier(insts); } /** * Updates the classifier with the given instance. * * @param instance the new training instance to include in the model * @exception Exception if the instance could not be incorporated in the * model. */ @Override public void updateClassifier(Instance instance) throws Exception { if (!instance.classIsMissing()) { if (m_Classifiers.length == 1) { ((UpdateableClassifier) m_Classifiers[0]).updateClassifier(instance); return; } for (int i = 0; i < m_Classifiers.length; i++) { if (m_Classifiers[i] != null) { m_ClassFilters[i].input(instance); Instance converted = m_ClassFilters[i].output(); if (converted != null) { converted.dataset().setClassIndex(m_ClassAttribute.index()); ((UpdateableClassifier) m_Classifiers[i]) .updateClassifier(converted); if (m_Method == METHOD_1_AGAINST_1) { m_SumOfWeights[i] += converted.weight(); } } } } } } /** * Returns the distribution for an instance. * * @param inst the instance to get the distribution for * @return the distribution * @throws Exception if the distribution can't be computed successfully */ @Override public double[] distributionForInstance(Instance inst) throws Exception { if (m_Classifiers.length == 1) { return m_Classifiers[0].distributionForInstance(inst); } double[] probs = new double[inst.numClasses()]; if (m_Method == METHOD_1_AGAINST_1) { double[][] r = new double[inst.numClasses()][inst.numClasses()]; double[][] n = new double[inst.numClasses()][inst.numClasses()]; for (int i = 0; i < m_ClassFilters.length; i++) { if (m_Classifiers[i] != null && m_SumOfWeights[i] > 0) { Instance tempInst = (Instance) inst.copy(); tempInst.setDataset(m_TwoClassDataset); double[] current = m_Classifiers[i].distributionForInstance(tempInst); Range range = new Range( ((RemoveWithValues) m_ClassFilters[i]).getNominalIndices()); range.setUpper(m_ClassAttribute.numValues()); int[] pair = range.getSelection(); if (m_pairwiseCoupling && inst.numClasses() > 2) { r[pair[0]][pair[1]] = current[0]; n[pair[0]][pair[1]] = m_SumOfWeights[i]; } else { if (current[0] > current[1]) { probs[pair[0]] += 1.0; } else { probs[pair[1]] += 1.0; } } } } if (m_pairwiseCoupling && inst.numClasses() > 2) { try { return pairwiseCoupling(n, r); } catch (IllegalArgumentException ex) { } } if (Utils.gr(Utils.sum(probs), 0)) { Utils.normalize(probs); } return probs; } else { probs = super.distributionForInstance(inst); } /* * if (probs.length == 1) { // ZeroR made the prediction return new * double[m_ClassAttribute.numValues()]; } */ return probs; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 9248 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String[] argv) { runClassifier(new MultiClassClassifierUpdateable(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy