weka.core.AttributeStats Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* AttributeStats.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.core;
import java.io.Serializable;
/**
* A Utility class that contains summary information on an
* the values that appear in a dataset for a particular attribute.
*
* @author Len Trigg
* @version $Revision: 14912 $
*/
public class AttributeStats
implements Serializable, RevisionHandler {
/** for serialization */
private static final long serialVersionUID = 4434688832743939380L;
/** The number of int-like values */
public int intCount = 0;
/** The number of real-like values (i.e. have a fractional part) */
public int realCount = 0;
/** The number of missing values */
public int missingCount = 0;
/** The number of distinct values */
public int distinctCount = 0;
/** The number of values that only appear once */
public int uniqueCount = 0;
/** The total number of values (i.e. number of instances) */
public int totalCount = 0;
/** Stats on numeric value distributions */
// perhaps Stats should be moved from weka.experiment to weka.core
public weka.experiment.Stats numericStats;
/** Counts of each nominal value */
public int [] nominalCounts;
/** Weight mass for each nominal value */
public double[] nominalWeights;
/**
* Updates the counters for one more observed distinct value.
*
* @param value the value that has just been seen
* @param count the number of times the value appeared
* @param weight the weight mass of the value
*/
protected void addDistinct(double value, int count, double weight) {
if (count > 0) {
if (count == 1) {
uniqueCount++;
}
if (value == (int)value) {
intCount += count;
} else {
realCount += count;
}
if (nominalCounts != null) {
nominalCounts[(int) value] = count;
nominalWeights[(int) value] = weight;
}
if (numericStats != null) {
//numericStats.add(value, count);
numericStats.add(value, weight);
numericStats.calculateDerived();
}
}
distinctCount++;
}
/**
* Returns a human readable representation of this AttributeStats instance.
*
* @return a String represtinging these AttributeStats.
*/
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append(Utils.padLeft("Type", 4)).append(Utils.padLeft("Nom", 5));
sb.append(Utils.padLeft("Int", 5)).append(Utils.padLeft("Real", 5));
sb.append(Utils.padLeft("Missing", 12));
sb.append(Utils.padLeft("Unique", 12));
sb.append(Utils.padLeft("Dist", 6));
if (nominalCounts != null) {
sb.append(' ');
for (int i = 0; i < nominalCounts.length; i++) {
sb.append(Utils.padLeft("C[" + i + "]", 5));
}
}
sb.append('\n');
long percent;
percent = Math.round(100.0 * intCount / totalCount);
if (nominalCounts != null) {
sb.append(Utils.padLeft("Nom", 4)).append(' ');
sb.append(Utils.padLeft("" + percent, 3)).append("% ");
sb.append(Utils.padLeft("" + 0, 3)).append("% ");
} else {
sb.append(Utils.padLeft("Num", 4)).append(' ');
sb.append(Utils.padLeft("" + 0, 3)).append("% ");
sb.append(Utils.padLeft("" + percent, 3)).append("% ");
}
percent = Math.round(100.0 * realCount / totalCount);
sb.append(Utils.padLeft("" + percent, 3)).append("% ");
sb.append(Utils.padLeft("" + missingCount, 5)).append(" /");
percent = Math.round(100.0 * missingCount / totalCount);
sb.append(Utils.padLeft("" + percent, 3)).append("% ");
sb.append(Utils.padLeft("" + uniqueCount, 5)).append(" /");
percent = Math.round(100.0 * uniqueCount / totalCount);
sb.append(Utils.padLeft("" + percent, 3)).append("% ");
sb.append(Utils.padLeft("" + distinctCount, 5)).append(' ');
if (nominalCounts != null) {
for (int i = 0; i < nominalCounts.length; i++) {
sb.append(Utils.padLeft("" + nominalCounts[i], 5));
}
}
sb.append('\n');
return sb.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 14912 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy