All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.Stats Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Stats.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.experiment;

import java.io.Serializable;

import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;


/**
 * A class to store simple statistics.

* * Upon initialization the variables take the following values:

* * {@link #count} = {@link #sum} = {@link #sumSq} = 0
* {@link #mean} = {@link #stdDev} = {@link #min} = {@link #max} = Double.NaN *

* This is called the initial state.

* * For signaling that a Stats object has been provided with values that hint * that something is either wrong with the data used or the algorithm used there * is also the invalid state where the variables take the following values:

* * {@link #count} = {@link #sum} = {@link #sumSq} = {@link #mean} = * {@link #stdDev} = {@link #min} = {@link #max} = Double.NaN *

* Once a Stats object goes into the invalid state it can't change its state * anymore.

* * A Stats object assumes that only values are subtracted (by using the * {@link #subtract(double)} or {@link #subtract(double, double)} methods) * that have previously been added (by using the {@link #add(double)} or * {@link #add(double, double)} methods) and the weights must be the same * too.
* Otherwise the Stats object's fields' values are implementation defined.

* * If the implementation detects a problem then the Stats object goes into the * invalid state.

* * The fields {@link #count}, {@link #sum}, {@link #sumSq}, {@link #min} and * {@link #max} are always updated whereas the field {@link #mean} and * {@link #stdDev} are only guaranteed to be updated after a call to * {@link #calculateDerived()}.

* * For the fields {@link #min} and {@link #max} the following rules apply:

* * min(values_added \ values_subtracted) >= {@link #min} >= min(values_added)
* max(values_added \ values_subtracted) <= {@link #max} <= max(values_added) *

* Where \ is the set difference.

* * For the field {@link #stdDev} the following rules apply:

*

    *
  1. If count <= 1 then * {@link #stdDev}=Double.NaN.
  2. *
  3. Otherwise {@link #stdDev} >= 0 and it should take on the value by best * effort of the implementation.
  4. *
* * For the methods {@link #add(double)}, {@link #add(double, double)}, * {@link #subtract(double)} and {@link #subtract(double, double)} the following * rules apply:

* *

    *
  1. if weight < 0 then {@link #subtract(double, double)} is used instead of * {@link #add(double, double)} with weight = -weight and vice versa.
  2. *
  3. if weight = +-inf or weight = NaN then the Stats object goes into the * invalid state.
  4. *
  5. if value = +-inf or value = NaN then the Stats object goes into the * invalid state.
  6. *
  7. if weight = 0 then the value gets ignored.
  8. *
  9. Otherwise the fields get updated by the implementation's best effort.
  10. *
* * For {@link #count} the following rules apply

* *

    *
  1. If {@link #count} goes below zero then all fields are set to * Double.NaN except the {@link #count} field which gets tracked * normally.
  2. *
  3. If {@link #count} = 0 then the Stats object goes into the initial state. *
  4. *
  5. If {@link #count} > 0 for the first time, then the Stats object goes into * initial state and gets updated with the corresponding value and weight. *
  6. *
* * @author Len Trigg ([email protected]) * @version $Revision: 14074 $ */ public class Stats implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -8610544539090024102L; /** The number of values seen */ public double count = 0; /** The sum of values seen */ public double sum = 0; /** The sum of values squared seen */ public double sumSq = 0; /** The std deviation of values at the last calculateDerived() call */ public double stdDev = Double.NaN; /** The mean of values, or Double.NaN if no values seen */ public double mean = Double.NaN; /** The minimum value seen, or Double.NaN if no values seen */ public double min = Double.NaN; /** The maximum value seen, or Double.NaN if no values seen */ public double max = Double.NaN; /** an important factor to calculate the standard deviation incrementally */ private double stdDevFactor = 0; private void reset() { count = 0; sum = 0; sumSq = 0; stdDev = Double.NaN; mean = Double.NaN; min = Double.NaN; max = Double.NaN; stdDevFactor = 0; } private void negativeCount() { sum = Double.NaN; sumSq = Double.NaN; stdDev = Double.NaN; mean = Double.NaN; min = Double.NaN; max = Double.NaN; } private void goInvalid() { count = Double.NaN; negativeCount(); } private boolean isInvalid() { return Double.isNaN(count); } /** * Adds a value to the observed values

* * It's equivalent to add(value, 1)

* * @param value the observed value */ public void add(double value) { add(value, 1); } /** * Adds a weighted value to the observed values * * @param value the observed value * @param weight the weight of the observed value */ public void add(double value, double weight) { // treat as subtract if (weight < 0) { subtract(value, -weight); return; } // don't leave invalid state if (isInvalid()) return; // go invalid if (Double.isInfinite(weight) || Double.isNaN(weight) || Double.isInfinite(value) || Double.isNaN(value)) { goInvalid(); return; } // ignore if (weight == 0) return; double newCount = count + weight; if (count < 0 && (newCount > 0 || Utils.eq(newCount, 0))) { reset(); return; } count = newCount; if (count < 0) { return; } double weightedValue = value*weight; sum += weightedValue; sumSq += value * weightedValue; if (Double.isNaN(mean)) { // For the first value the mean can suffer from loss of precision // so we treat it separately and make sure the calculation stays accurate mean = value; stdDevFactor = 0; } else { double delta = weight*(value - mean); mean += delta/count; stdDevFactor += delta*(value - mean); } if (Double.isNaN(min)) { min = max = value; } else if (value < min) { min = value; } else if (value > max) { max = value; } } /** * Removes a value to the observed values (no checking is done * that the value being removed was actually added).

* * It's equivalent to subtract(value, 1)

* * @param value the observed value */ public void subtract(double value) { subtract(value, 1); } /** * Subtracts a weighted value from the observed values * * @param value the observed value * @param weight the weight of the observed value */ public void subtract(double value, double weight) { // treat as add if (weight < 0) { add(value, -weight); return; } // don't leave invalid state if (isInvalid()) return; // go invalid if (Double.isInfinite(weight) || Double.isNaN(weight) || Double.isInfinite(value) || Double.isNaN(value)) { goInvalid(); return; } // ignore if (weight == 0) return; count -= weight; if (Utils.eq(count, 0)) { reset(); return; } else if (count < 0) { negativeCount(); return; } double weightedValue = value*weight; sum -= weightedValue; sumSq -= value * weightedValue; double delta = weight*(value - mean); mean -= delta/count; stdDevFactor -= delta*(value - mean); } /** * Tells the object to calculate any statistics that don't have their * values automatically updated during add. Currently updates the standard deviation. */ public void calculateDerived() { if (count <= 1) { stdDev = Double.NaN; return; } stdDev = stdDevFactor/(count - 1); if (stdDev < 0) { stdDev = 0; return; } stdDev = Math.sqrt(stdDev); } /** * Returns a string summarising the stats so far. * * @return the summary string */ public String toString() { return "Count " + Utils.doubleToString(count, 8) + '\n' + "Min " + Utils.doubleToString(min, 8) + '\n' + "Max " + Utils.doubleToString(max, 8) + '\n' + "Sum " + Utils.doubleToString(sum, 8) + '\n' + "SumSq " + Utils.doubleToString(sumSq, 8) + '\n' + "Mean " + Utils.doubleToString(mean, 8) + '\n' + "StdDev " + Utils.doubleToString(stdDev, 8) + '\n'; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 14074 $"); } /** * Tests the paired stats object from the command line. * reads line from stdin, expecting two values per line. * * @param args ignored. */ public static void main(String [] args) { try { Stats ps = new Stats(); java.io.LineNumberReader r = new java.io.LineNumberReader( new java.io.InputStreamReader(System.in)); String line; while ((line = r.readLine()) != null) { line = line.trim(); if (line.equals("") || line.startsWith("@") || line.startsWith("%")) { continue; } java.util.StringTokenizer s = new java.util.StringTokenizer(line, " ,\t\n\r\f"); int count = 0; double v1 = 0; while (s.hasMoreTokens()) { double val = (new Double(s.nextToken())).doubleValue(); if (count == 0) { v1 = val; } else { System.err.println("MSG: Too many values in line \"" + line + "\", skipped."); break; } count++; } if (count == 1) { ps.add(v1); } } ps.calculateDerived(); System.err.println(ps); } catch (Exception ex) { ex.printStackTrace(); System.err.println(ex.getMessage()); } } } // Stats