weka.knowledgeflow.steps.Associator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Associator.java
* Copyright (C) 2015 University of Waikato, Hamilton, New Zealand
*
*/
package weka.knowledgeflow.steps;
import weka.associations.AssociationRules;
import weka.associations.AssociationRulesProducer;
import weka.core.Attribute;
import weka.core.Drawable;
import weka.core.Instances;
import weka.core.WekaException;
import weka.gui.ProgrammaticProperty;
import weka.gui.knowledgeflow.StepVisual;
import weka.knowledgeflow.Data;
import weka.knowledgeflow.StepManager;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* Step that wraps a Weka associator. Handles dataSet, trainingSet and testSet
* incoming connections. All connections are treated the same - i.e. are used as
* training data.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: $
*/
@KFStep(name = "Associator", category = "Associations",
toolTipText = "Weka associator wrapper", iconPath = "")
public class Associator extends WekaAlgorithmWrapper {
private static final long serialVersionUID = -589410455393151511L;
/** Template for the associator in use */
protected weka.associations.Associator m_associatorTemplate;
/**
* Get the class of the algorithm being wrapped
*
* @return the class of the wrapped algorithm
*/
@Override
public Class getWrappedAlgorithmClass() {
return weka.associations.Associator.class;
}
/**
* Set the wrapped algorithm
*
* @param algo the wrapped algorithm
*/
@Override
public void setWrappedAlgorithm(Object algo) {
super.setWrappedAlgorithm(algo);
m_defaultIconPath = StepVisual.BASE_ICON_PATH + "DefaultAssociator.gif";
}
/**
* Set the associator to use. Is a convenience method - just calls
* setWrappedAlgorithm()
*
* @param associator the associator to use
*/
@ProgrammaticProperty
public void setAssociator(weka.associations.Associator associator) {
setWrappedAlgorithm(associator);
}
/**
* Get the associator to use. Is a convenience method - just calls
* getWrappedAlgorithm()
*
* @return the associator in use
*/
public weka.associations.Associator getAssociator() {
return (weka.associations.Associator) getWrappedAlgorithm();
}
/**
* Initializes the step
*
* @throws WekaException if a problem occurs
*/
@Override
public void stepInit() throws WekaException {
if (!(getWrappedAlgorithm() instanceof weka.associations.Associator)) {
throw new WekaException("Wrapped algorithm is not an instance of "
+ "a weka.associations.Associator!");
}
try {
m_associatorTemplate =
weka.associations.AbstractAssociator.makeCopy(getAssociator());
} catch (Exception ex) {
throw new WekaException(ex);
}
}
/**
* Processes incoming data
*
* @param data the data to process
* @throws WekaException if a problem occurs
*/
@Override
public void processIncoming(Data data) throws WekaException {
Instances insts = data.getPrimaryPayload();
Integer setNum = data.getPayloadElement(StepManager.CON_AUX_DATA_SET_NUM);
Integer maxSetNum =
data.getPayloadElement(StepManager.CON_AUX_DATA_MAX_SET_NUM);
try {
if (!isStopRequested()) {
getStepManager().processing();
weka.associations.Associator associator =
weka.associations.AbstractAssociator.makeCopy(m_associatorTemplate);
associator.buildAssociations(insts);
outputAssociatorData(associator, setNum, maxSetNum);
outputTextData(associator, insts, setNum);
outputGraphData(associator, insts, setNum);
if (!isStopRequested()) {
getStepManager().finished();
} else {
getStepManager().interrupted();
}
}
} catch (Exception ex) {
throw new WekaException(ex);
}
}
/**
* Outputs the trained associator to downstream steps that are interested
*
* @param associator the associator to output
* @param setNum the set number of the data used to train the associator
* @param maxSetNum the maximum set number
* @throws WekaException if a problem occurs
*/
protected void outputAssociatorData(weka.associations.Associator associator,
Integer setNum, Integer maxSetNum) throws WekaException {
if (getStepManager()
.numOutgoingConnectionsOfType(StepManager.CON_BATCH_ASSOCIATOR) == 0) {
return;
}
Data out = new Data(StepManager.CON_BATCH_ASSOCIATOR, associator);
if (setNum != null && maxSetNum != null) {
out.setPayloadElement(StepManager.CON_AUX_DATA_SET_NUM, setNum);
out.setPayloadElement(StepManager.CON_AUX_DATA_MAX_SET_NUM, maxSetNum);
}
if (associator instanceof AssociationRulesProducer) {
AssociationRules rules =
((AssociationRulesProducer) associator).getAssociationRules();
out.setPayloadElement(StepManager.CON_AUX_DATA_BATCH_ASSOCIATION_RULES,
rules);
}
getStepManager().outputData(out);
}
/**
* Outputs textual representation of associator to downstream steps
*
* @param associator the associator to output the textual form for
* @param train the training data used to train the associator
* @param setNum the set number of the data
* @throws WekaException if a problem occurs
*/
protected void outputTextData(weka.associations.Associator associator,
Instances train, Integer setNum) throws WekaException {
if (getStepManager()
.numOutgoingConnectionsOfType(StepManager.CON_TEXT) == 0) {
return;
}
String modelString = associator.toString();
String titleString = associator.getClass().getName();
titleString = titleString.substring(titleString.lastIndexOf('.') + 1,
titleString.length());
modelString = "=== Associator model ===\n\n" + "Scheme: " + titleString
+ "\n" + "Relation: " + train.relationName() + "\n\n" + modelString;
titleString = "Model: " + titleString;
Data textData = new Data(StepManager.CON_TEXT, modelString);
textData.setPayloadElement(StepManager.CON_AUX_DATA_TEXT_TITLE,
titleString);
if (setNum != null) {
textData.setPayloadElement(StepManager.CON_AUX_DATA_SET_NUM, setNum);
}
getStepManager().outputData(textData);
}
protected void outputGraphData(weka.associations.Associator associator,
Instances insts, Integer setNum) throws WekaException {
if (!(associator instanceof Drawable) || getStepManager()
.numOutgoingConnectionsOfType(StepManager.CON_GRAPH) == 0) {
return;
}
try {
String graphString = ((Drawable) associator).graph();
int graphType = ((Drawable) associator).graphType();
String grphTitle = associator.getClass().getCanonicalName();
grphTitle =
grphTitle.substring(grphTitle.lastIndexOf('.') + 1, grphTitle.length());
String set = setNum != null ? "Set " + setNum : "";
grphTitle = set + " (" + insts.relationName() + ") " + grphTitle;
Data graphData = new Data(StepManager.CON_GRAPH);
graphData.setPayloadElement(StepManager.CON_GRAPH, graphString);
graphData.setPayloadElement(StepManager.CON_AUX_DATA_GRAPH_TITLE,
grphTitle);
graphData.setPayloadElement(StepManager.CON_AUX_DATA_GRAPH_TYPE,
graphType);
getStepManager().outputData(graphData);
} catch (Exception ex) {
throw new WekaException(ex);
}
}
/**
* Get a list of incoming connection types that this step can accept at this
* time
*
* @return a list of incoming connections that this step can accept
*/
@Override
public List getIncomingConnectionTypes() {
List result = new ArrayList();
if (getStepManager().numIncomingConnections() == 0) {
result.addAll(Arrays.asList(StepManager.CON_DATASET,
StepManager.CON_TRAININGSET, StepManager.CON_TESTSET));
}
return result;
}
/**
* Get a list of outgoing connections that this step can produce at this time
*
* @return a list of outgoing connection types
*/
@Override
public List getOutgoingConnectionTypes() {
List result = new ArrayList();
if (getStepManager().numIncomingConnections() > 0) {
result.add(StepManager.CON_BATCH_ASSOCIATOR);
result.add(StepManager.CON_TEXT);
}
result.add(StepManager.CON_INFO);
return result;
}
/**
* If possible, get the output structure for the named connection type as a
* header-only set of instances. Can return null if the specified connection
* type is not representable as Instances or cannot be determined at present.
*
* @param connectionName the connection type to generate output structure for
* @return the output structure this step generates, or null if it can't be
* determined at this point in time
* @throws WekaException if a problem occurs
*/
@Override
public Instances outputStructureForConnectionType(String connectionName)
throws WekaException {
if (connectionName.equals(StepManager.CON_TEXT)) {
ArrayList attInfo = new ArrayList();
attInfo.add(new Attribute("Title", (ArrayList) null));
attInfo.add(new Attribute("Text", (ArrayList) null));
return new Instances("TextEvent", attInfo, 0);
} else if (connectionName.equals(StepManager.CON_BATCH_ASSOCIATOR)) {
if (m_associatorTemplate instanceof AssociationRulesProducer) {
// we make the assumption here that consumers of
// batchAssociationRules events will utilize a structure
// consisting of the RHS of the rule (String), LHS of the
// rule (String) and one numeric attribute for each metric
// associated with the rules.
String[] metricNames = ((AssociationRulesProducer) m_associatorTemplate)
.getRuleMetricNames();
ArrayList attInfo = new ArrayList();
attInfo.add(new Attribute("LHS", (ArrayList) null));
attInfo.add(new Attribute("RHS", (ArrayList) null));
attInfo.add(new Attribute("Support"));
for (String metricName : metricNames) {
attInfo.add(new Attribute(metricName));
}
return new Instances(StepManager.CON_AUX_DATA_BATCH_ASSOCIATION_RULES,
attInfo, 0);
}
}
return null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy