weka.gui.knowledgeflow.templates.pythonScripting.kf Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaPython Show documentation
Show all versions of wekaPython Show documentation
Integration with CPython for Weka. Python version 2.7.x or higher is required. Also requires the following packages to be installed in python: numpy, pandas, matplotlib and scikit-learn. This package provides a wrapper classifier and clusterer that, between them, cover 60+ scikit-learn algorithms. It also provides a general scripting step for the Knowlege Flow along with scripting plugin environments for the Explorer and Knowledge Flow.
The newest version!
{
"flow_name" : "Python Scripting",
"steps" : [
{
"class" : "weka.knowledgeflow.steps.PythonScriptExecutor",
"properties" : {
"debug" : false,
"name" : "PythonScriptExecutor",
"pythonScript" : "import matplotlib.pyplot as plt\nfrom pandas.plotting import scatter_matrix\nfrom pandas.plotting import andrews_curves\nfrom pandas.plotting import parallel_coordinates\nfrom pandas.plotting import radviz\nimport numpy as np\nfrom sklearn import *\niris=py_data\n# Summarize the input data\nsummary=str(iris.describe(include='all'))\n# Scatter plot\nscatter = scatter_matrix(iris,figsize=(6,6),diagonal='kde')\nfig=scatter[0][0].get_figure()\n# Andrew's curves\nfig2=plt.figure()\nandrews_curves(iris, 'class')\n# Parallel coordinates\nfig3=plt.figure()\nparallel_coordinates(iris, 'class')\n# RadViz\nfig4=plt.figure()\nradviz(iris, 'class')\n# learn a scikit-learn classifier and get predictions\nX=iris.iloc[:,[0,1,2,3]].values\nY=iris.iloc[:,[4]].values\ndt=tree.DecisionTreeClassifier()\ndt.fit(X,Y)\npreds=dt.predict_proba(X)",
"scriptFile" : "",
"variablesToGetFromPython" : "summary,iris,fig,fig2,fig3,fig4,preds"
},
"connections" : {
"text" : [
"TextViewer"
],
"image" : [
"ImageViewer"
],
"dataSet" : [
"TextViewer2"
]
},
"coordinates" : "320,40"
},
{
"class" : "weka.knowledgeflow.steps.Loader",
"properties" : {
"loader" : {
"type" : "loader",
"class" : "weka.core.converters.ArffLoader",
"filePath" : "weka/gui/knowledgeflow/templates/iris.arff",
"useRelativePath" : false
},
"name" : "ArffLoader"
},
"connections" : {
"dataSet" : [
"PythonScriptExecutor"
]
},
"coordinates" : "40,40"
},
{
"class" : "weka.knowledgeflow.steps.TextViewer",
"properties" : {
"name" : "TextViewer"
},
"connections" : {
},
"coordinates" : "320,200"
},
{
"class" : "weka.knowledgeflow.steps.ImageViewer",
"properties" : {
"name" : "ImageViewer"
},
"connections" : {
},
"coordinates" : "560,200"
},
{
"class" : "weka.knowledgeflow.steps.TextViewer",
"properties" : {
"name" : "TextViewer2"
},
"connections" : {
},
"coordinates" : "560,40"
},
{
"class" : "weka.knowledgeflow.steps.Note",
"properties" : {
"name" : "Note",
"noteText" : "Load the iris data from\nthe classpath"
},
"connections" : {
},
"coordinates" : "28,137"
},
{
"class" : "weka.knowledgeflow.steps.Note",
"properties" : {
"name" : "Note2",
"noteText" : "Collect textual\nvariables from\nPython"
},
"connections" : {
},
"coordinates" : "217,217"
},
{
"class" : "weka.knowledgeflow.steps.Note",
"properties" : {
"name" : "Note3",
"noteText" : "Collect images\nfrom Python"
},
"connections" : {
},
"coordinates" : "450,221"
},
{
"class" : "weka.knowledgeflow.steps.Note",
"properties" : {
"name" : "Note4",
"noteText" : "The iris data\nback from Python"
},
"connections" : {
},
"coordinates" : "552,130"
}
]
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy