
one.empty3.feature20220726.GFG Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of empty3-library-3d Show documentation
Show all versions of empty3-library-3d Show documentation
3D rendering engine. Plus modelling. Expected glsl textures 3d and 2d rendering3D primitives, and a lot of scenes' samples to test.+ Game Jogl reworked, Calculator (numbers and vectors). Java code parser implementation starts (<=1.2)
The newest version!
/*
*
* * Copyright (c) 2024. Manuel Daniel Dahmen
* *
* *
* * Copyright 2024 Manuel Daniel Dahmen
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*
*/
package one.empty3.feature20220726;
// Implementing Coppersmith Winograd Algorithm in Java
import java.io.*;
import java.util.Random;
class GFG {
public static boolean coppersmithWinograd(double[][] M1,
double[][] M2,
double[][] M3, int n) {
double[][] a = new double[n][1];
Random rand = new Random();
for (int i = 0; i < n; i++) {
a[i][0] = rand.nextInt() % 2;
}
double[][] M2a = new double[n][1];
for (int i = 0; i < n; i++) {
for (int j = 0; j < 1; j++) {
for (int k = 0; k < n; k++) {
M2a[i][j]
= M2a[i][j] + M2[i][k] * a[k][j];
}
}
}
double[][] M3a = new double[n][1];
for (int i = 0; i < n; i++) {
for (int j = 0; j < 1; j++) {
for (int k = 0; k < n; k++) {
M3a[i][j]
= M3a[i][j] + M3[i][k] * a[k][j];
}
}
}
double[][] M12a = new double[n][1];
for (int i = 0; i < n; i++) {
for (int j = 0; j < 1; j++) {
for (int k = 0; k < n; k++) {
M12a[i][j]
= M12a[i][j] + M1[i][k] * M2a[k][j];
}
}
}
for (int i = 0; i < n; i++) {
M12a[i][0] -= M3a[i][0];
}
boolean sameResultantMatrix = true;
for (int i = 0; i < n; i++) {
if (M12a[i][0] == 0)
continue;
else
sameResultantMatrix = false;
}
return sameResultantMatrix;
}
// Driver's Function m1*m2==m3
public static void inv(double[][] M2, int n) {
/// "Input the dimension of the matrices: "
// "Input the 1st or M1 matrix: "
double[][] M1 = {{1, 2}, {3, 4}};
// "Input the 2nd or M2 matrix: "
// double[][] M2 = { { 2, 0 }, { 1, 2 } };
// "Input the result or M3 matrix: "
double[][] M3 = {{4, 4}, {10, 8}};
if (coppersmithWinograd(M1, M2, M3, n))
System.out.println("Resultant matrix is Matching");
else
System.out.println("Resultant matrix is not Matching");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy