one.empty3.feature.DBScanProcess Maven / Gradle / Ivy
/*
* Copyright (c) 2022-2023. Manuel Daniel Dahmen
*
*
* Copyright 2012-2023 Manuel Daniel Dahmen
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package one.empty3.feature;
import one.empty3.feature.kmeans.K_Clusterer;
import one.empty3.feature.kmeans.MakeDataset;
import one.empty3.feature.kmeans.ReadDataset;
import one.empty3.io.ProcessFile;
import javax.imageio.ImageIO;
import java.io.File;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
public class DBScanProcess extends ProcessFile {
public List ns(List points, double eps, double[] ps) {
List n = new ArrayList<>();
for (double[] p : points) {
if (distance(p, ps) < eps) {
n.add(p);
}
}
return n;
}
List points;
double[] size;
HashMap> clusters = new HashMap<>();
HashMap centroids = new HashMap<>();
int pointsMax = 10000;
double eps = 2.0;
int minPts = 10;
int c = 0;
PixM pix;
public void dbscan() {
size = new double[]{
pix.getColumns(), pix.getLines(), 1.0, 1.0, 1.0
};
int count = 0;
while (count < pointsMax) {
for (double[] p : points) {
if (centroids.get(p) != null && centroids.get(p) > -1) {
List n = ns(points, eps, p);
if (n.size() < minPts) {
centroids.put(p, -1);
continue;
}
c = c + 1;
centroids.put(p, c);
}
List N = ns(points, eps, p);
for (double[] q : N) {
if (N.size() > minPts) {
centroids.put(q, c);
} else {
centroids.put(q, -1);
}
}
count++;
}
}
}
public double distance(double[] p1,
double[] p2) {
double d = 0.0;
for (int i = 0; i < Math.min(p1.length, p2.length); i++)
d += (p1[i] - p2[i]) * (p1[i] - p2[i]);
return Math.sqrt(d);
}
public double[] density(List cluster, double[] centroid) {
double[] den = new double[]{0.0, 0.0, 0.0, 0.0, 0.0};
for (double[] item : cluster) {
for (int i = 0; i < 5; i++) {
double abs = Math.abs(item[i] - centroid[i]);
if (abs > 0)
den[i] += item[i] / Math.abs(item[i] - centroid[i]);
}
}
return den;
}
//main method
public boolean process(File in, File out) {
// points.
try {
new MakeDataset(in,
new File(out.getAbsolutePath() + ".csv"), -1);
new K_Clusterer().process(in, new File(out.getAbsolutePath() + ".csv"), out, maxRes);
} catch (Exception ex) {
ex.printStackTrace();
}
try {
pix = PixM
.getPixM(ImageIO.read(in), 100);
} catch (Exception ex1) {
ex1.printStackTrace();
return false;
}
PixM pix2 = new PixM(
pix.getColumns(),
pix.getLines()
);
ReadDataset r1 = new ReadDataset();
r1.features.clear();
//Scanner sc = new Scanner(System.in);
//Logger.getAnonymousLogger().log(Level.INFO, "Enter the filename with path");
String file = out.getAbsolutePath() + ".csv";
try {
r1.read(new File(file)); //load data
} catch (Exception ex) {
ex.printStackTrace();
}
points = r1.features;
dbscan();
clusters.forEach((i, l) -> {
for (double[] p : l)
for (int j = 0; j < 3; j++) {
pix2.setCompNo(j);
pix2.set((int) (float) (p[0]),
(int) (float) (p[1]),
1.0 * p[j]);
}
});
try {
ImageIO.write(pix2.normalize(0.0, 1.0).getImage(), "jpg", out);
} catch (Exception ex1) {
ex1.printStackTrace();
}
return true;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy