one.empty3.library.core.nurbs.Nurbs Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of empty3-library-generic Show documentation
Show all versions of empty3-library-generic Show documentation
3D rendering engine. Plus modeling. Expected glsl textures 3d and 2d rendering
/*
* Copyright (c) 2023. Manuel Daniel Dahmen
*
*
* Copyright 2012-2023 Manuel Daniel Dahmen
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package one.empty3.library.core.nurbs;
public class Nurbs {
/* Subroutine to generate B-spline basis functions for open knot vectors
C code for An Introduction to NURBS
by David F. Rogers. Copyright (C) 2000 David F. Rogers,
All rights reserved.
Name: basis.c
Language: C
Subroutines called: none
Book reference: p. 279
c = order of the B-spline basis function
d = first term of the basis function recursion relation
e = second term of the basis function recursion relation
npts = number of defining polygon vertices
n[] = array containing the basis functions
n[1] contains the basis function associated with B1 etc.
nplusc = constant -- npts + c -- maximum number of knot values
t = parameter value
temp[] = temporary array
coordArr[] = knot vector
*/
public static void basis(int c, double t, int npts, int[] x, double[] n) {
int nplusc;
int i, k;
double d, e;
double[] temp = new double[36];
nplusc = npts + c;
/* printf("knot vector is \n");
for (i = 1; i <= nplusc; i++){
printf(" %d %d \n", i,coordArr[i]);
}
printf("t is %f \n", t);
*/
/* calculate the first order basis functions n[i][1] */
for (i = 1; i <= nplusc - 1; i++) {
if ((t >= x[i]) && (t < x[i + 1])) {
temp[i] = 1;
} else {
temp[i] = 0;
}
}
/* calculate the higher order basis functions */
for (k = 2; k <= c; k++) {
for (i = 1; i <= nplusc - k; i++) {
if (temp[i] != 0) /* if the lower order basis function is zero skip the calculation */ {
d = ((t - x[i]) * temp[i]) / (x[i + k - 1] - x[i]);
} else {
d = 0;
}
if (temp[i + 1] != 0) /* if the lower order basis function is zero skip the calculation */ {
e = ((x[i + k] - t) * temp[i + 1]) / (x[i + k] - x[i + 1]);
} else {
e = 0;
}
temp[i] = d + e;
}
}
if (t == (double) x[nplusc]) { /* pick up last point */
temp[npts] = 1;
}
/* put in n array */
for (i = 1; i <= npts; i++) {
n[i] = temp[i];
}
}
/*
Subroutine to generate a B-spline open knot vector with multiplicity
equal to the order at the ends.
c = order of the basis function
n = the number of defining polygon vertices
nplus2 = index of coordArr() for the first occurence of the maximum knot vector value
nplusc = maximum value of the knot vector -- $n + c$
coordArr() = array containing the knot vector
*/
public static void knot(int n, int c, int[] x) {
int nplusc, nplus2, i;
nplusc = n + c;
nplus2 = n + 2;
x[1] = 0;
for (i = 2; i <= nplusc; i++) {
if ((i > c) && (i < nplus2)) {
x[i] = x[i - 1] + 1;
} else {
x[i] = x[i - 1];
}
}
}
/* Subroutine to calculate a Cartesian product rational B-spline
surface using open uniform knot vectors (see Eq. (7.1)).
C code for An Introduction to NURBS
by David F. Rogers. Copyright (C) 2000 David F. Rogers,
All rights reserved.
Name: rbspsurf.c
Language: C
Subroutines called: knot.c, basis.c sumrbas.c
Book reference: Chapter 7, Section 7.1, Alg. p. 308
b[] = array containing the polygon net points
b[1] = coordArr-component
b[2] = y-component
b[3] = z-component
b[4] = h-component
Note: Bi,j = b[] has dimensions of n*m*3 with j varying fastest
The polygon net is n coordArr m
k = order in the u direction
l = order in the w direction
mbasis[] = array containing the nonrational basis functions for one value of w (see Eq. (3.2))
mpts = the number of polygon vertices in w direction
nbasis[] = array containing the nonrational basis functions for one value of u (see Eq. (3.2))
npts = the number of polygon vertices in u direction
p1 = number of parametric lines in the u direction
p2 = number of parametric lines in the w direction
q[] = array containing the resulting surface
q[1] = coordArr-component
q[2] = y-component
q[3] = z-component
for a fixed value of u the next m elements contain
the values for the curve q[u[sub i],w] q has dimensions
of p1*p2*3. The display surface is p1 coordArr p2
*/
public static void rbspsurf(
int k, int l,
int npts, int mpts,
int p1, int p2,
double[] b, double[] q) {
/* allows for 20 data points with basis function of order 5 */
int i, j, j1, jbas;
int icount;
int uinc, winc;
int nplusc, mplusc;
int[] x = new int[30];
int[] y = new int[30];
int temp;
double[] nbasis = new double[30];
double[] mbasis = new double[30];
double pbasis;
double h;
double sum;
double u, w;
double stepu, stepw;
/* printf("in bsplsurf.c \n"); */
/* zero and redimension the arrays */
nplusc = npts + k;
mplusc = mpts + l;
for (i = 1; i <= nplusc; i++) {
x[i] = 0;
}
for (i = 1; i <= mplusc; i++) {
y[i] = 0;
}
for (i = 1; i <= npts; i++) {
nbasis[i] = 0.;
}
for (i = 1; i <= mpts; i++) {
mbasis[i] = 0.;
}
temp = 3 * (p1 * p2);
for (i = 1; i <= 3 * p1 * p2; i++) {
q[i] = 0.;
}
/* generate the open uniform knot vectors */
knot(npts, k, x); /* calculate u knot vector */
knot(mpts, l, y); /* calculate w knot vector */
icount = 1;
/* calculate the points on the B-spline surface */
stepu = (double) x[nplusc] / (double) (p1 - 1);
stepw = (double) y[mplusc] / (double) (p2 - 1);
u = 0.;
for (uinc = 1; uinc <= p1; uinc++) {
if ((double) x[nplusc] - u < 5e-6) {
u = (double) x[nplusc];
}
basis(k, u, npts, x, nbasis); /* basis function for this value of u */
w = 0.;
for (winc = 1; winc <= p2; winc++) {
if ((double) y[mplusc] - w < 5e-6) {
w = (double) y[mplusc];
}
basis(l, w, mpts, y, mbasis); /* basis function for this value of w */
sum = sumrbas(b, nbasis, mbasis, npts, mpts);
/* printf("in rbspsurf u,w,sum = %f %f %f \n",u,w,sum);*/
for (i = 1; i <= npts; i++) {
if (nbasis[i] != 0.) {
jbas = 4 * mpts * (i - 1);
for (j = 1; j <= mpts; j++) {
if (mbasis[j] != 0.) {
j1 = jbas + 4 * (j - 1) + 1;
pbasis = b[j1 + 3] * nbasis[i] * mbasis[j] / sum;
q[icount] = q[icount] + b[j1] * pbasis; /* calculate surface point */
q[icount + 1] = q[icount + 1] + b[j1 + 1] * pbasis;
q[icount + 2] = q[icount + 2] + b[j1 + 2] * pbasis;
}
}
}
}
icount = icount + 3;
w = w + stepw;
}
u = u + stepu;
}
}
/* Subroutine to calculate the sum of the nonrational basis functions (see \eq {6--87}).
C code for An Introduction to NURBS
by David F. Rogers. Copyright (C) 2000 David F. Rogers,
All rights reserved.
Name: sumrbas.c
Language: C
Subroutines called: none
Book reference: Chapter 7, Section 7.1, Alg. p.309
b[] = array containing the polygon net points
b[1] = coordArr-component
b[2] = y-component
b[3] = z-component
b[4] = homogeneous coordinate weighting factor
Note: Bi,j = b[] has dimensions of n*m coordArr 4 with j varying fastest
The polygon net is n coordArr m
mbasis[,] = array containing the nonrational basis functions for one value of w
mpts = the number of polygon vertices in w direction
nbasis[,] = array containing the nonrational basis functions for one value of u
npts = the number of polygon vertices in u direction
sum = sum of the basis functions
*/
public static double sumrbas(
double b[], double[] nbasis, double[] mbasis,
int npts, int mpts) {
int i, j, jbas, j1;
double sum;
/* calculate the sum */
sum = 0;
/* printf("npts,mpts %d %d \n", npts,mpts);*/
for (i = 1; i <= npts; i++) {
if (nbasis[i] != 0.) {
jbas = 4 * mpts * (i - 1);
for (j = 1; j <= mpts; j++) {
/* printf("i,j,jbas %d %d %d \n",i,j,jbas);*/
if (mbasis[j] != 0.) {
j1 = jbas + 4 * (j - 1) + 4;
/* printf("in sumrbas j1 = %d \n",j1);*/
sum = sum + b[j1] * nbasis[i] * mbasis[j];
}
}
}
}
return (sum);
}
/*
Test program for C code from An Introduction to NURBS
by David F. Rogers. Copyright (C) 2000 David F. Rogers,
All rights reserved.
Name: trbsurf.c
Purpose: Test rational B-spline surface generator
Language: C
Subroutines called: rbspsurf.c
Book reference: Chapter 7, Section 7.1, Alg. p 308
*/
public static void main(String[] args) {
int i;
int npts, mpts;
int k, l;
int p1, p2;
double[] b = new double[66];
double[] q = new double[701];
char[] header = new char[80];
int hdrlen;
/*
Data for the standard test control net.
Comment out to use file input.
*/
npts = 4;
mpts = 4;
k = 3;
l = 3;
p1 = 5;
p2 = 5;
/* printf("k,l,npts,mpts,p1,p2 = %d %d %d %d %d %d \n",k,l,npts,mpts,p1,p2);*/
for (i = 1; i <= 4 * npts; i++) {
b[i] = 0.;
}
for (i = 1; i <= 3 * p1 * p2; i++) {
q[i] = 0.;
}
/*
This is a standard test control polygon from Ex. 6.1, p. 184
Comment out to use file input .rnp. Data is in the
form coordArr=b[1], y=b[2], z=b[3], h=b[4], etc. All h are 1.0.
Thus, this is a nonrational B-spline surface and the results
should be the same as for tbsurf.c
*/
b[1] = -15.;
b[2] = 0.;
b[3] = 15.;
b[4] = 1;
b[5] = -15.;
b[6] = 5.;
b[7] = 5.;
b[8] = 1;
b[9] = -15.;
b[10] = 5.;
b[11] = -5.;
b[12] = 1;
b[13] = -15.;
b[14] = 0.;
b[15] = -15.;
b[16] = 1;
b[17] = -5.;
b[18] = 5.;
b[19] = 15.;
b[20] = 1;
b[21] = -5.;
b[22] = 10.;
b[23] = 5.;
b[24] = 1;
b[25] = -5.;
b[26] = 10.;
b[27] = -5.;
b[28] = 1;
b[29] = -5.;
b[30] = 5.;
b[31] = -15.;
b[32] = 1;
b[33] = 5.;
b[34] = 5.;
b[35] = 15.;
b[36] = 1;
b[37] = 5.;
b[38] = 10.;
b[39] = 5.;
b[40] = 1;
b[41] = 5.;
b[42] = 10.;
b[43] = -5.;
b[44] = 1;
b[45] = 5.;
b[46] = 0.;
b[47] = -15.;
b[48] = 1;
b[49] = 15.;
b[50] = 0.;
b[51] = 15.;
b[52] = 1;
b[53] = 15.;
b[54] = 5.;
b[55] = 5.;
b[56] = 1;
b[57] = 15.;
b[58] = 5.;
b[59] = -5.;
b[60] = 1;
b[61] = 15.;
b[62] = 0.;
b[63] = -15.;
b[64] = 1;
/*
Uncomment the file input statement below and comment out the standard
control net data above to use file input. Also needs to be compiled
with the file rdrnp.c
*/
/* get polygon netpoint file */
/* rdrnp(header,&hdrlen,&k,&l,&npts,&mpts,b); */
rbspsurf(k, l, npts, mpts, p1, p2, b, q);
/* Use the next two lines for getting performance timings
and comment out the line above.
*/
/* for (i = 1; i<=1000; i++){
rbspsurf(b,k,l,npts,mpts,p1,p2,q);
}
*/
System.out.printf("\nPolygon points\n\n");
for (i = 1; i <= 4 * npts * mpts; i = i + 4) {
System.out.printf(" %f %f %f %f\n", b[i], b[i + 1], b[i + 2], b[i + 3]);
}
System.out.printf("\nSurface points\n\n");
for (i = 1; i <= 3 * p1 * p2; i = i + 3) {
System.out.printf("%f, %f, %f \n", q[i], q[i + 1], q[i + 2]);
}
/* To get output in the format of an sgf file
remove the comment and compile with sgfout.c
*/
/*
sgfout(p1,p2,q);
*/
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy