one.empty3.neuralnetwork.Net Maven / Gradle / Ivy
/*
* Copyright (c) 2022-2023. Manuel Daniel Dahmen
*
*
* Copyright 2012-2023 Manuel Daniel Dahmen
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package one.empty3.neuralnetwork;
import one.empty3.feature.PixM;
import one.empty3.library.StructureMatrix;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.function.Consumer;
public class Net {
private static double RESOLUTION = 14;
private List trainSet;
private Layer inputLayer;
private List> hiddenLayerList;
private List> outputLayerList;
private PredictedResult predictedResult;
public Net() {
// inputLayer = new Layer();
outputLayerList = new ArrayList<>();
hiddenLayerList = new ArrayList<>();
trainSet = new ArrayList<>();
RESOLUTION = 14;
}
public Layer getInputLayer() {
return inputLayer;
}
public void setInputLayer(Layer inputLayer) {
this.inputLayer = inputLayer;
}
public List> getHiddenLayerList() {
return hiddenLayerList;
}
public void setHiddenLayerList(List> hiddenNeuronList) {
this.hiddenLayerList = hiddenNeuronList;
}
public List> getOutputLayerList() {
return outputLayerList;
}
public void setOutputLayerList(List> outputNeuronList) {
this.outputLayerList = outputNeuronList;
}
public List getTrainSet() {
return trainSet;
}
public void setTrainSet(List trainSet) {
this.trainSet = trainSet;
}
public PredictedResult getPredictedResult() {
return predictedResult;
}
public void setPredictedResult(PredictedResult predictedResult) {
this.predictedResult = predictedResult;
}
public static double getRESOLUTION() {
return RESOLUTION;
}
public static void setRESOLUTION(double RESOLUTION) {
Net.RESOLUTION = RESOLUTION;
}
public void loadModel(File model) {
}
public void train() throws IOException {
int maxIterations = 1000;
int t = 0;
double errorGlobal = 0.0;
while (t < maxIterations) {
for (int n = 0; n < trainSet.size(); n++) {
PixM pixM = PixM.getPixM(ImageIO.read(trainSet.get(n)), RESOLUTION);
inputLayer.getNeurons().data2d.forEach(new Consumer>() {
@Override
public void accept(List ts) {
ts.forEach(new Consumer() {
@Override
public void accept(T t) {
t.setInputImage(pixM);
}
});
}
});
final double[] error = {0};
final double[] function = {0};
inputLayer.getNeurons().data2d.forEach(new Consumer>() {
@Override
public void accept(List ts) {
ts.forEach(new Consumer() {
@Override
public void accept(T t) {
function[0] += t.function();
error[0] += t.error();
t.updateW();
}
});
}
});
// Compute Xs through network
}
t++;
}
}
public double computeAll() {
StructureMatrix structureMatrix = new StructureMatrix(inputLayer.getNeurons().getDim(), Double.class);
switch (inputLayer.getNeurons().getDim()) {
case 0:
Neuron neuron = inputLayer.getNeurons().getElem();
neuron.compute();
structureMatrix.setElem(neuron.getOutput());
break;
case 1:
inputLayer.getNeurons().getData1d().forEach(new Consumer() {
@Override
public void accept(T t) {
t.compute();
structureMatrix.getData1d().add(t.getOutput());
}
});
break;
case 2:
inputLayer.getNeurons().getData2d().forEach(new Consumer>() {
int i=0;
@Override
public void accept(List ts) {
final int[] j = {0};
ts.forEach(new Consumer() {
@Override
public void accept(T t) {
t.compute();
structureMatrix.setElem(t.getOutput(), i, j[0]);
j[0]++;
}
});
i++;
}
});
}
return 0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy