Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* FloatFunctions.java
*
* Copyright (C) 2003-2006 Peter Graves
* $Id$
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* As a special exception, the copyright holders of this library give you
* permission to link this library with independent modules to produce an
* executable, regardless of the license terms of these independent
* modules, and to copy and distribute the resulting executable under
* terms of your choice, provided that you also meet, for each linked
* independent module, the terms and conditions of the license of that
* module. An independent module is a module which is not derived from
* or based on this library. If you modify this library, you may extend
* this exception to your version of the library, but you are not
* obligated to do so. If you do not wish to do so, delete this
* exception statement from your version.
*/
package org.armedbear.lisp;
import static org.armedbear.lisp.Lisp.*;
import java.math.BigInteger;
public final class FloatFunctions
{
// ### set-floating-point-modes &key traps =>
private static final Primitive SET_FLOATING_POINT_MODES =
new Primitive("set-floating-point-modes", PACKAGE_EXT, true,
"&key traps")
{
@Override
public LispObject execute(LispObject[] args)
{
if (args.length % 2 != 0)
program_error("Odd number of keyword arguments.");
for (int i = 0; i < args.length; i += 2) {
LispObject key = checkSymbol(args[i]);
LispObject value = args[i+1];
if (key == Keyword.TRAPS) {
boolean trap_overflow = false;
boolean trap_underflow = false;
while (value != NIL) {
LispObject car = value.car();
if (car == Keyword.OVERFLOW)
trap_overflow = true;
else if (car == Keyword.UNDERFLOW)
trap_underflow = true;
else
error(new LispError("Unsupported floating point trap: " +
car.princToString()));
value = value.cdr();
}
TRAP_OVERFLOW = trap_overflow;
TRAP_UNDERFLOW = trap_underflow;
} else
error(new LispError("Unrecognized keyword: " + key.princToString()));
}
return LispThread.currentThread().nothing();
}
};
// ### get-floating-point-modes => modes
private static final Primitive GET_FLOATING_POINT_MODES =
new Primitive("get-floating-point-modes", PACKAGE_EXT, true, "")
{
@Override
public LispObject execute()
{
LispObject traps = NIL;
if (TRAP_UNDERFLOW)
traps = traps.push(Keyword.UNDERFLOW);
if (TRAP_OVERFLOW)
traps = traps.push(Keyword.OVERFLOW);
return list(Keyword.TRAPS, traps);
}
};
// ### integer-decode-float float => significand, exponent, integer-sign
private static final Primitive INTEGER_DECODE_FLOAT =
new Primitive("integer-decode-float", "float")
{
// (defun sane-integer-decode-float (float)
// (multiple-value-bind (mantissa exp sign)
// (integer-decode-float float)
// (let ((fixup (- (integer-length mantissa) (float-precision float))))
// (values (ash mantissa (- fixup))
// (+ exp fixup)
// sign))))
// See also: http://paste.lisp.org/display/10847
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat) {
int bits =
Float.floatToRawIntBits(((SingleFloat)arg).value);
int s = ((bits >> 31) == 0) ? 1 : -1;
int e = (int) ((bits >> 23) & 0xffL);
int m;
if (e == 0)
m = (bits & 0x7fffff) << 1;
else
m = (bits & 0x7fffff) | 0x800000;
LispObject significand = number(m);
Fixnum exponent = Fixnum.getInstance(e - 150);
Fixnum sign = Fixnum.getInstance(s);
return LispThread.currentThread().setValues(significand,
exponent,
sign);
}
if (arg instanceof DoubleFloat) {
long bits =
Double.doubleToRawLongBits((double)((DoubleFloat)arg).value);
int s = ((bits >> 63) == 0) ? 1 : -1;
int e = (int) ((bits >> 52) & 0x7ffL);
long m;
if (e == 0)
m = (bits & 0xfffffffffffffL) << 1;
else
m = (bits & 0xfffffffffffffL) | 0x10000000000000L;
LispObject significand = number(m);
Fixnum exponent = Fixnum.getInstance(e - 1075);
Fixnum sign = Fixnum.getInstance(s);
return LispThread.currentThread().setValues(significand,
exponent,
sign);
}
return type_error(arg, Symbol.FLOAT);
}
};
// ### %float-bits float => integer
private static final Primitive _FLOAT_BITS =
new Primitive("%float-bits", PACKAGE_SYS, true, "integer")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat) {
int bits = Float.floatToIntBits(((SingleFloat)arg).value);
BigInteger big = BigInteger.valueOf(bits >> 1);
return Bignum.getInstance(big.shiftLeft(1).add(((bits & 1) == 1) ? BigInteger.ONE : BigInteger.ZERO));
}
if (arg instanceof DoubleFloat) {
long bits = Double.doubleToLongBits(((DoubleFloat)arg).value);
BigInteger big = BigInteger.valueOf(bits >> 1);
return Bignum.getInstance(big.shiftLeft(1).add(((bits & 1) == 1) ? BigInteger.ONE : BigInteger.ZERO));
}
return type_error(arg, Symbol.FLOAT);
}
};
// ### rational
private static final Primitive RATIONAL =
new Primitive("rational", "number")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat)
return ((SingleFloat)arg).rational();
if (arg instanceof DoubleFloat)
return ((DoubleFloat)arg).rational();
if (arg.rationalp())
return arg;
return type_error(arg, Symbol.REAL);
}
};
// ### float-radix
// float-radix float => float-radix
private static final Primitive FLOAT_RADIX =
new Primitive("float-radix", "float")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat || arg instanceof DoubleFloat)
return Fixnum.TWO;
return type_error(arg, Symbol.FLOAT);
}
};
static final Fixnum FIXNUM_24 = Fixnum.getInstance(24);
static final Fixnum FIXNUM_53 = Fixnum.getInstance(53);
// ### float-digits
// float-digits float => float-digits
private static final Primitive FLOAT_DIGITS =
new Primitive("float-digits", "float")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat)
return FIXNUM_24;
if (arg instanceof DoubleFloat)
return FIXNUM_53;
return type_error(arg, Symbol.FLOAT);
}
};
// ### scale-float float integer => scaled-float
private static final Primitive SCALE_FLOAT =
new Primitive("scale-float", "float integer")
{
@Override
public LispObject execute(LispObject first, LispObject second)
{
if (first instanceof SingleFloat) {
float f = ((SingleFloat)first).value;
int n = Fixnum.getValue(second);
return new SingleFloat(f * (float) Math.pow(2, n));
}
if (first instanceof DoubleFloat) {
double d = ((DoubleFloat)first).value;
int n = Fixnum.getValue(second);
return new DoubleFloat(d * Math.pow(2, n));
}
return type_error(first, Symbol.FLOAT);
}
};
// ### coerce-to-single-float
private static final Primitive COERCE_TO_SINGLE_FLOAT =
new Primitive("coerce-to-single-float", PACKAGE_SYS, false)
{
@Override
public LispObject execute(LispObject arg)
{
return SingleFloat.coerceToFloat(arg);
}
};
// ### coerce-to-double-float
private static final Primitive COERCE_TO_DOUBLE_FLOAT =
new Primitive("coerce-to-double-float", PACKAGE_SYS, false)
{
@Override
public LispObject execute(LispObject arg)
{
return DoubleFloat.coerceToFloat(arg);
}
};
// ### float
// float number &optional prototype => float
private static final Primitive FLOAT =
new Primitive("float", "number &optional prototype")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat || arg instanceof DoubleFloat)
return arg;
return SingleFloat.coerceToFloat(arg);
}
@Override
public LispObject execute(LispObject first, LispObject second)
{
if (second instanceof SingleFloat)
return SingleFloat.coerceToFloat(first);
if (second instanceof DoubleFloat)
return DoubleFloat.coerceToFloat(first);
return type_error(second, Symbol.FLOAT);
}
};
// ### floatp
// floatp object => generalized-boolean
private static final Primitive FLOATP = new Primitive("floatp", "object")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat)
return T;
if (arg instanceof DoubleFloat)
return T;
return NIL;
}
};
// ### single-float-bits
private static final Primitive SINGLE_FLOAT_BITS =
new Primitive("single-float-bits", PACKAGE_SYS, true, "float")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat) {
SingleFloat f = (SingleFloat) arg;
return Fixnum.getInstance(Float.floatToIntBits(f.value));
}
return type_error(arg, Symbol.FLOAT);
}
};
// ### double-float-high-bits
private static final Primitive DOUBLE_FLOAT_HIGH_BITS =
new Primitive("double-float-high-bits", PACKAGE_SYS, true, "float")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof DoubleFloat) {
DoubleFloat f = (DoubleFloat) arg;
return number(Double.doubleToLongBits(f.value) >>> 32);
}
return type_error(arg, Symbol.DOUBLE_FLOAT);
}
};
// ### double-float-low-bits
private static final Primitive DOUBLE_FLOAT_LOW_BITS =
new Primitive("double-float-low-bits", PACKAGE_SYS, true, "float")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof DoubleFloat) {
DoubleFloat f = (DoubleFloat) arg;
return number(Double.doubleToLongBits(f.value) & 0xffffffffL);
}
return type_error(arg, Symbol.DOUBLE_FLOAT);
}
};
// ### make-single-float bits => float
private static final Primitive MAKE_SINGLE_FLOAT =
new Primitive("make-single-float", PACKAGE_SYS, true, "bits")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof Fixnum) {
int bits = ((Fixnum)arg).value;
return new SingleFloat(Float.intBitsToFloat(bits));
}
if (arg instanceof Bignum) {
long bits = ((Bignum)arg).value.longValue();
return new SingleFloat(Float.intBitsToFloat((int)bits));
}
return type_error(arg, Symbol.INTEGER);
}
};
// ### make-double-float bits => float
private static final Primitive MAKE_DOUBLE_FLOAT =
new Primitive("make-double-float", PACKAGE_SYS, true, "bits")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof Fixnum) {
long bits = (long) ((Fixnum)arg).value;
return new DoubleFloat(Double.longBitsToDouble(bits));
}
if (arg instanceof Bignum) {
long bits = ((Bignum)arg).value.longValue();
return new DoubleFloat(Double.longBitsToDouble(bits));
}
return type_error(arg, Symbol.INTEGER);
}
};
// ### float-infinity-p
private static final Primitive FLOAT_INFINITY_P =
new Primitive("float-infinity-p", PACKAGE_SYS, true)
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat)
return Float.isInfinite(((SingleFloat)arg).value) ? T : NIL;
if (arg instanceof DoubleFloat)
return Double.isInfinite(((DoubleFloat)arg).value) ? T : NIL;
return type_error(arg, Symbol.FLOAT);
}
};
// ### float-nan-p
private static final Primitive FLOAT_NAN_P =
new Primitive("float-nan-p", PACKAGE_SYS, true)
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat)
return Float.isNaN(((SingleFloat)arg).value) ? T : NIL;
if (arg instanceof DoubleFloat)
return Double.isNaN(((DoubleFloat)arg).value) ? T : NIL;
return type_error(arg, Symbol.FLOAT);
}
};
// ### float-string
private static final Primitive FLOAT_STRING =
new Primitive("float-string", PACKAGE_SYS, true)
{
@Override
public LispObject execute(LispObject arg)
{
final String s1;
if (arg instanceof SingleFloat)
s1 = String.valueOf(((SingleFloat)arg).value);
else if (arg instanceof DoubleFloat)
s1 = String.valueOf(((DoubleFloat)arg).value);
else
return type_error(arg, Symbol.FLOAT);
int i = s1.indexOf('E');
if (i < 0)
return new SimpleString(s1);
String s2 = s1.substring(0, i);
int exponent = Integer.parseInt(s1.substring(i + 1));
if (exponent == 0)
return new SimpleString(s2);
int index = s2.indexOf('.');
if (index < 0)
return new SimpleString(s2);
StringBuffer sb = new StringBuffer(s2);
if (index >= 0)
sb.deleteCharAt(index);
// Now we've got just the digits in the StringBuffer.
if (exponent > 0) {
int newIndex = index + exponent;
if (newIndex < sb.length())
sb.insert(newIndex, '.');
else if (newIndex == sb.length())
sb.append('.');
else {
// We need to add some zeros.
while (newIndex > sb.length())
sb.append('0');
sb.append('.');
}
} else {
Debug.assertTrue(exponent < 0);
int newIndex = index + exponent;
while (newIndex < 0) {
sb.insert(0, '0');
++newIndex;
}
sb.insert(0, '.');
}
return new SimpleString(sb.toString());
}
};
}