Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* MathFunctions.java
*
* Copyright (C) 2004-2006 Peter Graves
* $Id$
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* As a special exception, the copyright holders of this library give you
* permission to link this library with independent modules to produce an
* executable, regardless of the license terms of these independent
* modules, and to copy and distribute the resulting executable under
* terms of your choice, provided that you also meet, for each linked
* independent module, the terms and conditions of the license of that
* module. An independent module is a module which is not derived from
* or based on this library. If you modify this library, you may extend
* this exception to your version of the library, but you are not
* obligated to do so. If you do not wish to do so, delete this
* exception statement from your version.
*/
package org.armedbear.lisp;
import static org.armedbear.lisp.Lisp.*;
public final class MathFunctions
{
// Implementation of section 12.1.5.3, which says:
// "If the result of any computation would be a complex number whose
// real part is of type rational and whose imaginary part is zero,
// the result is converted to the rational which is the real part."
private static final LispObject complexToRealFixup(LispObject result,
LispObject arg)
{
if (result instanceof Complex
&& ! (arg instanceof Complex)) {
Complex c = (Complex)result;
LispObject im = c.getImaginaryPart();
if (im.zerop())
return c.getRealPart();
}
return result;
}
// ### sin
private static final Primitive SIN = new Primitive("sin", "radians")
{
@Override
public LispObject execute(LispObject arg)
{
return sin(arg);
}
};
static LispObject sin(LispObject arg)
{
if (arg instanceof DoubleFloat)
return new DoubleFloat(Math.sin(((DoubleFloat)arg).value));
if (arg.realp())
return new SingleFloat((float)Math.sin(SingleFloat.coerceToFloat(arg).value));
if (arg instanceof Complex) {
LispObject n = arg.multiplyBy(Complex.getInstance(Fixnum.ZERO,
Fixnum.ONE));
LispObject result = exp(n);
result = result.subtract(exp(n.multiplyBy(Fixnum.MINUS_ONE)));
return result.divideBy(Fixnum.TWO.multiplyBy(Complex.getInstance(Fixnum.ZERO,
Fixnum.ONE)));
}
return type_error(arg, Symbol.NUMBER);
}
// ### cos
private static final Primitive COS = new Primitive("cos", "radians")
{
@Override
public LispObject execute(LispObject arg)
{
return cos(arg);
}
};
static LispObject cos(LispObject arg)
{
if (arg instanceof DoubleFloat)
return new DoubleFloat(Math.cos(((DoubleFloat)arg).value));
if (arg.realp())
return new SingleFloat((float)Math.cos(SingleFloat.coerceToFloat(arg).value));
if (arg instanceof Complex) {
LispObject n = arg.multiplyBy(Complex.getInstance(Fixnum.ZERO,
Fixnum.ONE));
LispObject result = exp(n);
result = result.add(exp(n.multiplyBy(Fixnum.MINUS_ONE)));
return result.divideBy(Fixnum.TWO);
}
return type_error(arg, Symbol.NUMBER);
}
// ### tan
private static final Primitive TAN = new Primitive("tan", "radians")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof DoubleFloat)
return new DoubleFloat(Math.tan(((DoubleFloat)arg).value));
if (arg.realp())
return new SingleFloat((float)Math.tan(SingleFloat.coerceToFloat(arg).value));
return sin(arg).divideBy(cos(arg));
}
};
// ### asin
private static final Primitive ASIN = new Primitive("asin", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return asin(arg);
}
};
static LispObject asin(LispObject arg)
{
if (arg instanceof SingleFloat) {
float f = ((SingleFloat)arg).value;
if (Math.abs(f) <= 1)
return new SingleFloat((float)Math.asin(f));
}
if (arg instanceof DoubleFloat) {
double d = ((DoubleFloat)arg).value;
if (Math.abs(d) <= 1)
return new DoubleFloat(Math.asin(d));
}
LispObject result = arg.multiplyBy(arg);
result = Fixnum.ONE.subtract(result);
result = sqrt(result);
LispObject n = Complex.getInstance(Fixnum.ZERO, Fixnum.ONE);
n = n.multiplyBy(arg);
result = n.add(result);
result = log(result);
result = result.multiplyBy(Complex.getInstance(Fixnum.ZERO,
Fixnum.MINUS_ONE));
return complexToRealFixup(result, arg);
}
// ### acos
private static final Primitive ACOS = new Primitive("acos", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return acos(arg);
}
};
static LispObject acos(LispObject arg)
{
if (arg instanceof DoubleFloat) {
double d = ((DoubleFloat)arg).value;
if (Math.abs(d) <= 1)
return new DoubleFloat(Math.acos(d));
}
if (arg instanceof SingleFloat) {
float f = ((SingleFloat)arg).value;
if (Math.abs(f) <= 1)
return new SingleFloat((float)Math.acos(f));
}
LispObject result = new DoubleFloat(Math.PI/2);
if (!(arg instanceof DoubleFloat)) {
if (arg instanceof Complex &&
((Complex)arg).getRealPart() instanceof DoubleFloat) {
// do nothing; we want to keep the double float value
}
else
result = new SingleFloat((float)((DoubleFloat)result).value);
}
result = result.subtract(asin(arg));
return complexToRealFixup(result, arg);
}
// ### atan
private static final Primitive ATAN =
new Primitive("atan", "number1 &optional number2")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg.numberp())
return atan(arg);
return type_error(arg, Symbol.NUMBER);
}
// "If both number1 and number2 are supplied for atan, the result is
// the arc tangent of number1/number2."
// y = +0 x = +0 +0
// y = -0 x = +0 -0
// y = +0 x = -0 +
// y = -0 x = -0 -
@Override
public LispObject execute(LispObject y, LispObject x)
{
if (!y.realp())
return type_error(y, Symbol.REAL);
if (!x.realp())
return type_error(x, Symbol.REAL);
double d1, d2;
d1 = DoubleFloat.coerceToFloat(y).value;
d2 = DoubleFloat.coerceToFloat(x).value;
double result = Math.atan2(d1, d2);
if (y instanceof DoubleFloat || x instanceof DoubleFloat)
return new DoubleFloat(result);
else
return new SingleFloat((float)result);
}
};
static LispObject atan(LispObject arg)
{
if (arg instanceof Complex) {
LispObject im = ((Complex)arg).imagpart;
if (im.zerop())
return Complex.getInstance(atan(((Complex)arg).realpart),
im);
LispObject result = arg.multiplyBy(arg);
result = result.add(Fixnum.ONE);
result = Fixnum.ONE.divideBy(result);
result = sqrt(result);
LispObject n = Complex.getInstance(Fixnum.ZERO, Fixnum.ONE);
n = n.multiplyBy(arg);
n = n.add(Fixnum.ONE);
result = n.multiplyBy(result);
result = log(result);
result = result.multiplyBy(Complex.getInstance(Fixnum.ZERO, Fixnum.MINUS_ONE));
return result;
}
if (arg instanceof DoubleFloat)
return new DoubleFloat(Math.atan(((DoubleFloat)arg).value));
return new SingleFloat((float)Math.atan(SingleFloat.coerceToFloat(arg).value));
}
// ### sinh
private static final Primitive SINH = new Primitive("sinh", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return sinh(arg);
}
};
static LispObject sinh(LispObject arg)
{
if (arg instanceof Complex) {
LispObject im = ((Complex)arg).getImaginaryPart();
if (im.zerop())
return Complex.getInstance(sinh(((Complex)arg).getRealPart()),
im);
}
if (arg instanceof SingleFloat) {
double d = Math.sinh(((SingleFloat)arg).value);
return new SingleFloat((float)d);
} else if (arg instanceof DoubleFloat) {
double d = Math.sinh(((DoubleFloat)arg).value);
return new DoubleFloat(d);
}
LispObject result = exp(arg);
result = result.subtract(exp(arg.multiplyBy(Fixnum.MINUS_ONE)));
result = result.divideBy(Fixnum.TWO);
return complexToRealFixup(result, arg);
}
// ### cosh
private static final Primitive COSH = new Primitive("cosh", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return cosh(arg);
}
};
static LispObject cosh(LispObject arg)
{
if (arg instanceof Complex) {
LispObject im = ((Complex)arg).getImaginaryPart();
if (im.zerop())
return Complex.getInstance(cosh(((Complex)arg).getRealPart()),
im);
}
if (arg instanceof SingleFloat) {
double d = Math.cosh(((SingleFloat)arg).value);
return new SingleFloat((float)d);
} else if (arg instanceof DoubleFloat) {
double d = Math.cosh(((DoubleFloat)arg).value);
return new DoubleFloat(d);
}
LispObject result = exp(arg);
result = result.add(exp(arg.multiplyBy(Fixnum.MINUS_ONE)));
result = result.divideBy(Fixnum.TWO);
return complexToRealFixup(result, arg);
}
// ### tanh
private static final Primitive TANH = new Primitive("tanh", "number")
{
@Override
public LispObject execute(LispObject arg)
{
if (arg instanceof SingleFloat) {
double d = Math.tanh(((SingleFloat)arg).value);
return new SingleFloat((float)d);
} else if (arg instanceof DoubleFloat) {
double d = Math.tanh(((DoubleFloat)arg).value);
return new DoubleFloat(d);
}
return sinh(arg).divideBy(cosh(arg));
}
};
// ### asinh
private static final Primitive ASINH = new Primitive("asinh", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return asinh(arg);
}
};
static LispObject asinh(LispObject arg)
{
if (arg instanceof Complex) {
LispObject im = ((Complex)arg).getImaginaryPart();
if (im.zerop())
return Complex.getInstance(asinh(((Complex)arg).getRealPart()),
im);
}
LispObject result = arg.multiplyBy(arg);
result = Fixnum.ONE.add(result);
result = sqrt(result);
result = result.add(arg);
result = log(result);
return complexToRealFixup(result, arg);
}
// ### acosh
private static final Primitive ACOSH = new Primitive("acosh", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return acosh(arg);
}
};
static LispObject acosh(LispObject arg)
{
if (arg instanceof Complex) {
LispObject im = ((Complex)arg).getImaginaryPart();
if (im.zerop())
return Complex.getInstance(acosh(((Complex)arg).getRealPart()),
im);
}
LispObject n1 = arg.add(Fixnum.ONE);
n1 = n1.divideBy(Fixnum.TWO);
n1 = sqrt(n1);
LispObject n2 = arg.subtract(Fixnum.ONE);
n2 = n2.divideBy(Fixnum.TWO);
n2 = sqrt(n2);
LispObject result = n1.add(n2);
result = log(result);
result = result.multiplyBy(Fixnum.TWO);
return complexToRealFixup(result, arg);
}
// ### atanh
private static final Primitive ATANH = new Primitive("atanh", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return atanh(arg);
}
};
static LispObject atanh(LispObject arg)
{
if (arg instanceof Complex) {
LispObject im = ((Complex)arg).getImaginaryPart();
if (im.zerop())
return Complex.getInstance(atanh(((Complex)arg).getRealPart()),
im);
}
LispObject n1 = log(Fixnum.ONE.add(arg));
LispObject n2 = log(Fixnum.ONE.subtract(arg));
LispObject result = n1.subtract(n2);
result = result.divideBy(Fixnum.TWO);
return complexToRealFixup(result, arg);
}
// ### cis
private static final Primitive CIS = new Primitive("cis", "radians")
{
@Override
public LispObject execute(LispObject arg)
{
return cis(arg);
}
};
static LispObject cis(LispObject arg)
{
if (arg.realp())
return Complex.getInstance(cos(arg), sin(arg));
return type_error(arg, Symbol.REAL);
}
// ### exp
private static final Primitive EXP = new Primitive("exp", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return exp(arg);
}
};
static LispObject exp(LispObject arg)
{
if (arg.realp()) {
if (arg instanceof DoubleFloat) {
double d = Math.pow(Math.E, ((DoubleFloat)arg).value);
return OverUnderFlowCheck(new DoubleFloat(d));
} else {
float f = (float) Math.pow(Math.E, SingleFloat.coerceToFloat(arg).value);
return OverUnderFlowCheck(new SingleFloat(f));
}
}
if (arg instanceof Complex) {
Complex c = (Complex) arg;
return exp(c.getRealPart()).multiplyBy(cis(c.getImaginaryPart()));
}
return type_error(arg, Symbol.NUMBER);
}
// ### sqrt
private static final Primitive SQRT = new Primitive("sqrt", "number")
{
@Override
public LispObject execute(LispObject arg)
{
return sqrt(arg);
}
};
static final LispObject sqrt(LispObject obj)
{
if (obj instanceof DoubleFloat) {
if (obj.minusp())
return Complex.getInstance(new DoubleFloat(0), sqrt(obj.negate()));
return new DoubleFloat(Math.sqrt(DoubleFloat.coerceToFloat(obj).value));
}
if (obj.realp()) {
if (obj.minusp())
return Complex.getInstance(new SingleFloat(0), sqrt(obj.negate()));
return new SingleFloat((float)Math.sqrt(SingleFloat.coerceToFloat(obj).value));
}
if (obj instanceof Complex) {
LispObject imagpart = ((Complex)obj).imagpart;
if (imagpart.zerop()) {
LispObject realpart = ((Complex)obj).realpart;
if (realpart.minusp())
return Complex.getInstance(imagpart, sqrt(realpart.negate()));
else
return Complex.getInstance(sqrt(realpart), imagpart);
}
return exp(log(obj).divideBy(Fixnum.TWO));
}
return type_error(obj, Symbol.NUMBER);
}
// ### log
private static final Primitive LOG =
new Primitive("log", "number &optional base")
{
@Override
public LispObject execute(LispObject arg)
{
return log(arg);
}
@Override
public LispObject execute(LispObject number, LispObject base)
{
if (number.realp() && !number.minusp()
&& base.isEqualTo(Fixnum.getInstance(10))) {
double d =
Math.log10(DoubleFloat.coerceToFloat(number).value);
if (number instanceof DoubleFloat
|| base instanceof DoubleFloat)
return new DoubleFloat(d);
else
return new SingleFloat((float)d);
}
return log(number).divideBy(log(base));
}
};
static final LispObject log(LispObject obj)
{
if (obj.realp() && !obj.minusp()) {
// Result is real.
if (obj instanceof Fixnum)
return new SingleFloat((float)Math.log(((Fixnum)obj).value));
if (obj instanceof Bignum)
return new SingleFloat((float)Math.log(((Bignum)obj).doubleValue()));
if (obj instanceof Ratio)
return new SingleFloat((float)Math.log(((Ratio)obj).doubleValue()));
if (obj instanceof SingleFloat)
return new SingleFloat((float)Math.log(((SingleFloat)obj).value));
if (obj instanceof DoubleFloat)
return new DoubleFloat(Math.log(((DoubleFloat)obj).value));
} else {
// Result is complex.
if (obj.realp() && obj.minusp()) {
if (obj instanceof DoubleFloat) {
DoubleFloat re = DoubleFloat.coerceToFloat(obj);
DoubleFloat abs = new DoubleFloat(Math.abs(re.value));
DoubleFloat phase = new DoubleFloat(Math.PI);
return Complex.getInstance(new DoubleFloat(Math.log(abs.getValue())), phase);
} else {
SingleFloat re = SingleFloat.coerceToFloat(obj);
SingleFloat abs = new SingleFloat(Math.abs(re.value));
SingleFloat phase = new SingleFloat((float)Math.PI);
return Complex.getInstance(new SingleFloat((float)Math.log(abs.value)), phase);
}
} else if (obj instanceof Complex) {
if (((Complex)obj).getRealPart() instanceof DoubleFloat) {
DoubleFloat re = DoubleFloat.coerceToFloat(((Complex)obj).getRealPart());
DoubleFloat im = DoubleFloat.coerceToFloat(((Complex)obj).getImaginaryPart());
DoubleFloat phase =
new DoubleFloat(Math.atan2(im.getValue(), re.getValue())); // atan(y/x)
DoubleFloat abs = DoubleFloat.coerceToFloat(obj.ABS());
return Complex.getInstance(new DoubleFloat(Math.log(abs.getValue())), phase);
} else {
SingleFloat re = SingleFloat.coerceToFloat(((Complex)obj).getRealPart());
SingleFloat im = SingleFloat.coerceToFloat(((Complex)obj).getImaginaryPart());
SingleFloat phase =
new SingleFloat((float)Math.atan2(im.value, re.value)); // atan(y/x)
SingleFloat abs = SingleFloat.coerceToFloat(obj.ABS());
return Complex.getInstance(new SingleFloat((float)Math.log(abs.value)), phase);
}
}
}
type_error(obj, Symbol.NUMBER);
return NIL;
}
// ### expt base-number power-number => result
public static final Primitive EXPT =
new Primitive("expt", "base-number power-number")
{
@Override
public LispObject execute(LispObject base, LispObject power)
{
if (power.zerop()) {
if (power instanceof Fixnum) {
if (base instanceof SingleFloat)
return SingleFloat.ONE;
if (base instanceof DoubleFloat)
return DoubleFloat.ONE;
if (base instanceof Complex) {
if (((Complex)base).realpart instanceof SingleFloat)
return Complex.getInstance(SingleFloat.ONE,
SingleFloat.ZERO);
if (((Complex)base).realpart instanceof DoubleFloat)
return Complex.getInstance(DoubleFloat.ONE,
DoubleFloat.ZERO);
}
return Fixnum.ONE;
}
if (power instanceof DoubleFloat)
return DoubleFloat.ONE;
if (base instanceof DoubleFloat)
return DoubleFloat.ONE;
return SingleFloat.ONE;
}
if (base.zerop())
return base;
if (base.isEqualTo(1))
return base;
if ((power instanceof Fixnum
|| power instanceof Bignum)
&& (base.rationalp()
|| (base instanceof Complex
&& ((Complex)base).realpart.rationalp()))) {
// exact math version
return intexp(base, power);
}
// for anything not a rational or complex rational, use
// float approximation.
boolean wantDoubleFloat = false;
if (base instanceof DoubleFloat)
wantDoubleFloat = true;
else if (power instanceof DoubleFloat)
wantDoubleFloat = true;
else if (base instanceof Complex
&& (((Complex)base).getRealPart() instanceof DoubleFloat
|| ((Complex)base).getImaginaryPart() instanceof DoubleFloat))
wantDoubleFloat = true;
else if (power instanceof Complex
&& (((Complex)power).getRealPart() instanceof DoubleFloat
|| ((Complex)power).getImaginaryPart() instanceof DoubleFloat))
wantDoubleFloat = true;
if (wantDoubleFloat) {
if (power instanceof Complex)
power = ((Complex)power).coerceToDoubleFloat();
else
power = DoubleFloat.coerceToFloat(power);
if (base instanceof Complex)
base = ((Complex)base).coerceToDoubleFloat();
else
base = DoubleFloat.coerceToFloat(base);
}
if (base instanceof Complex || power instanceof Complex)
return exp(power.multiplyBy(log(base)));
final double x; // base
final double y; // power
if (base instanceof Fixnum)
x = ((Fixnum)base).value;
else if (base instanceof Bignum)
x = ((Bignum)base).doubleValue();
else if (base instanceof Ratio)
x = ((Ratio)base).doubleValue();
else if (base instanceof SingleFloat)
x = ((SingleFloat)base).value;
else if (base instanceof DoubleFloat)
x = ((DoubleFloat)base).value;
else
return error(new LispError("EXPT: unsupported case: base is of type " +
base.typeOf().princToString()));
if (power instanceof Fixnum)
y = ((Fixnum)power).value;
else if (power instanceof Bignum)
y = ((Bignum)power).doubleValue();
else if (power instanceof Ratio)
y = ((Ratio)power).doubleValue();
else if (power instanceof SingleFloat)
y = ((SingleFloat)power).value;
else if (power instanceof DoubleFloat)
y = ((DoubleFloat)power).value;
else
return error(new LispError("EXPT: unsupported case: power is of type " +
power.typeOf().princToString()));
double r = Math.pow(x, y);
if (Double.isNaN(r)) {
if (x < 0) {
r = Math.pow(-x, y);
double realPart = r * Math.cos(y * Math.PI);
double imagPart = r * Math.sin(y * Math.PI);
if (base instanceof DoubleFloat || power instanceof DoubleFloat)
return Complex
.getInstance(OverUnderFlowCheck(new DoubleFloat(realPart)),
OverUnderFlowCheck(new DoubleFloat(imagPart)));
else
return Complex
.getInstance(OverUnderFlowCheck(new SingleFloat((float)realPart)),
OverUnderFlowCheck(new SingleFloat((float)imagPart)));
}
}
if (base instanceof DoubleFloat || power instanceof DoubleFloat)
return OverUnderFlowCheck(new DoubleFloat(r));
else
return OverUnderFlowCheck(new SingleFloat((float)r));
}
};
/** Checks number for over- or underflow values.
*
* @param number
* @return number or signals an appropriate error
*/
final static LispObject OverUnderFlowCheck(LispObject number)
{
if (number instanceof Complex) {
OverUnderFlowCheck(((Complex)number).realpart);
OverUnderFlowCheck(((Complex)number).imagpart);
return number;
}
if (TRAP_OVERFLOW) {
if (number instanceof SingleFloat)
if (Float.isInfinite(((SingleFloat)number).value))
return error(new FloatingPointOverflow(NIL));
if (number instanceof DoubleFloat)
if (Double.isInfinite(((DoubleFloat)number).value))
return error(new FloatingPointOverflow(NIL));
}
if (TRAP_UNDERFLOW) {
if (number.zerop())
return error(new FloatingPointUnderflow(NIL));
}
return number;
}
/** Checks number for over- or underflow values.
*
* @param number
* @return number or signals an appropriate error
*/
final static float OverUnderFlowCheck(float number)
{
if (TRAP_OVERFLOW) {
if (Float.isInfinite(number))
error(new FloatingPointOverflow(NIL));
}
if (TRAP_UNDERFLOW) {
if (number == 0)
error(new FloatingPointUnderflow(NIL));
}
return number;
}
/** Checks number for over- or underflow values.
*
* @param number
* @return number or signals an appropriate error
*/
public final static double OverUnderFlowCheck(double number)
{
if (TRAP_OVERFLOW) {
if (Double.isInfinite(number))
error(new FloatingPointOverflow(NIL));
}
if (TRAP_UNDERFLOW) {
if (number == 0)
error(new FloatingPointUnderflow(NIL));
}
return number;
}
// Adapted from SBCL.
/** Return the exponent of base taken to the integer exponent power
*
* @param base A value of any type
* @param power An integer (fixnum or bignum) value
*/
static final LispObject intexp(LispObject base, LispObject power)
{
if (power.isEqualTo(0))
return Fixnum.ONE;
if (base.isEqualTo(1))
return base;
if (base.isEqualTo(0))
return base;
if (power.minusp()) {
power = Fixnum.ZERO.subtract(power);
return Fixnum.ONE.divideBy(intexp(base, power));
}
if (base.eql(Fixnum.TWO))
return Fixnum.ONE.ash(power);
LispObject nextn = power.ash(Fixnum.MINUS_ONE);
LispObject total;
if (power.oddp())
total = base;
else
total = Fixnum.ONE;
while (true) {
if (nextn.zerop())
return total;
base = base.multiplyBy(base);
if (nextn.oddp())
total = base.multiplyBy(total);
nextn = nextn.ash(Fixnum.MINUS_ONE);
}
}
}