Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (C) 2015-2020 Lightbend Inc.
*/
package akka.stream.scaladsl
import java.nio.ByteOrder
import akka.NotUsed
import akka.stream.impl.Stages.DefaultAttributes
import akka.stream.impl.fusing.GraphStages.SimpleLinearGraphStage
import akka.stream.stage._
import akka.stream.{ Attributes, FlowShape, Inlet, Outlet }
import akka.util.{ ByteIterator, ByteString, OptionVal }
import scala.annotation.tailrec
import scala.reflect.ClassTag
object Framing {
/**
* Creates a Flow that handles decoding a stream of unstructured byte chunks into a stream of frames where the
* incoming chunk stream uses a specific byte-sequence to mark frame boundaries.
*
* The decoded frames will not include the separator sequence.
*
* If there are buffered bytes (an incomplete frame) when the input stream finishes and ''allowTruncation'' is set to
* false then this Flow will fail the stream reporting a truncated frame.
*
* @param delimiter The byte sequence to be treated as the end of the frame.
* @param allowTruncation If `false`, then when the last frame being decoded contains no valid delimiter this Flow
* fails the stream instead of returning a truncated frame.
* @param maximumFrameLength The maximum length of allowed frames while decoding. If the maximum length is
* exceeded this Flow will fail the stream.
*/
def delimiter(
delimiter: ByteString,
maximumFrameLength: Int,
allowTruncation: Boolean = false): Flow[ByteString, ByteString, NotUsed] =
Flow[ByteString]
.via(new DelimiterFramingStage(delimiter, maximumFrameLength, allowTruncation))
.named("delimiterFraming")
/**
* Creates a Flow that decodes an incoming stream of unstructured byte chunks into a stream of frames, assuming that
* incoming frames have a field that encodes their length.
*
* If the input stream finishes before the last frame has been fully decoded, this Flow will fail the stream reporting
* a truncated frame.
*
* @param fieldLength The length of the "size" field in bytes
* @param fieldOffset The offset of the field from the beginning of the frame in bytes
* @param maximumFrameLength The maximum length of allowed frames while decoding. If the maximum length is exceeded
* this Flow will fail the stream. This length *includes* the header (i.e the offset and
* the length of the size field)
* @param byteOrder The ''ByteOrder'' to be used when decoding the field
*/
def lengthField(
fieldLength: Int,
fieldOffset: Int = 0,
maximumFrameLength: Int,
byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN): Flow[ByteString, ByteString, NotUsed] = {
require(fieldLength >= 1 && fieldLength <= 4, "Length field length must be 1, 2, 3 or 4.")
Flow[ByteString]
.via(new LengthFieldFramingStage(fieldLength, fieldOffset, maximumFrameLength, byteOrder))
.named("lengthFieldFraming")
}
/**
* Creates a Flow that decodes an incoming stream of unstructured byte chunks into a stream of frames, assuming that
* incoming frames have a field that encodes their length.
*
* If the input stream finishes before the last frame has been fully decoded, this Flow will fail the stream reporting
* a truncated frame.
*
* @param fieldLength The length of the "size" field in bytes
* @param fieldOffset The offset of the field from the beginning of the frame in bytes
* @param maximumFrameLength The maximum length of allowed frames while decoding. If the maximum length is exceeded
* this Flow will fail the stream. This length *includes* the header (i.e the offset and
* the length of the size field)
* @param byteOrder The ''ByteOrder'' to be used when decoding the field
* @param computeFrameSize This function can be supplied if frame size is varied or needs to be computed in a special fashion.
* For example, frame can have a shape like this: `[offset bytes][body size bytes][body bytes][footer bytes]`.
* Then computeFrameSize can be used to compute the frame size: `(offset bytes, computed size) => (actual frame size)`.
* ''Actual frame size'' must be equal or bigger than sum of `fieldOffset` and `fieldLength`, the operator fails otherwise.
*
*/
def lengthField(
fieldLength: Int,
fieldOffset: Int,
maximumFrameLength: Int,
byteOrder: ByteOrder,
computeFrameSize: (Array[Byte], Int) => Int): Flow[ByteString, ByteString, NotUsed] = {
require(fieldLength >= 1 && fieldLength <= 4, "Length field length must be 1, 2, 3 or 4.")
Flow[ByteString]
.via(new LengthFieldFramingStage(fieldLength, fieldOffset, maximumFrameLength, byteOrder, Some(computeFrameSize)))
.named("lengthFieldFraming")
}
/**
* Returns a BidiFlow that implements a simple framing protocol. This is a convenience wrapper over [[Framing#lengthField]]
* and simply attaches a length field header of four bytes (using big endian encoding) to outgoing messages, and decodes
* such messages in the inbound direction. The decoded messages do not contain the header.
* {{{
* +--------------------------------+
* | Framing BidiFlow |
* | |
* | +--------------------------+ |
* in2 ~~> | Decoding | ~~> out2
* | +--------------------------+ |
* | |
* | +--------------------------+ |
* out1 <~~ |Encoding(Add length field)| <~~ in1
* | +--------------------------+ |
* +--------------------------------+
* }}}
* This BidiFlow is useful if a simple message framing protocol is needed (for example when TCP is used to send
* individual messages) but no compatibility with existing protocols is necessary.
*
* The encoded frames have the layout
* {{{
* [4 bytes length field, Big Endian][User Payload]
* }}}
* The length field encodes the length of the user payload excluding the header itself.
*
* @param maximumMessageLength Maximum length of allowed messages. If sent or received messages exceed the configured
* limit this BidiFlow will fail the stream. The header attached by this BidiFlow are not
* included in this limit.
*/
def simpleFramingProtocol(
maximumMessageLength: Int): BidiFlow[ByteString, ByteString, ByteString, ByteString, NotUsed] = {
BidiFlow.fromFlowsMat(
simpleFramingProtocolEncoder(maximumMessageLength),
simpleFramingProtocolDecoder(maximumMessageLength))(Keep.left)
}
/**
* Protocol decoder that is used by [[Framing#simpleFramingProtocol]]
*/
def simpleFramingProtocolDecoder(maximumMessageLength: Int): Flow[ByteString, ByteString, NotUsed] =
lengthField(4, 0, maximumMessageLength + 4, ByteOrder.BIG_ENDIAN).map(_.drop(4))
/**
* Protocol encoder that is used by [[Framing#simpleFramingProtocol]]
*/
def simpleFramingProtocolEncoder(maximumMessageLength: Int): Flow[ByteString, ByteString, NotUsed] =
Flow[ByteString].via(new SimpleFramingProtocolEncoder(maximumMessageLength))
class FramingException(msg: String) extends RuntimeException(msg)
private final val bigEndianDecoder: (ByteIterator, Int) => Int = (bs, length) => {
var count = length
var decoded = 0
while (count > 0) {
decoded <<= 8
decoded |= bs.next().toInt & 0xFF
count -= 1
}
decoded
}
private final val littleEndianDecoder: (ByteIterator, Int) => Int = (bs, length) => {
val highestOctet = (length - 1) << 3
val Mask = ((1L << (length << 3)) - 1).toInt
var count = length
var decoded = 0
while (count > 0) {
decoded >>>= 8
decoded += (bs.next().toInt & 0xFF) << highestOctet
count -= 1
}
decoded & Mask
}
private class SimpleFramingProtocolEncoder(maximumMessageLength: Long) extends SimpleLinearGraphStage[ByteString] {
override def createLogic(inheritedAttributes: Attributes) =
new GraphStageLogic(shape) with InHandler with OutHandler {
setHandlers(in, out, this)
override def onPush(): Unit = {
val message = grab(in)
val msgSize = message.size
if (msgSize > maximumMessageLength)
failStage(
new FramingException(
s"Maximum allowed message size is $maximumMessageLength but tried to send $msgSize bytes"))
else {
val header =
ByteString((msgSize >> 24) & 0xFF, (msgSize >> 16) & 0xFF, (msgSize >> 8) & 0xFF, msgSize & 0xFF)
push(out, header ++ message)
}
}
override def onPull(): Unit = pull(in)
}
}
private class DelimiterFramingStage(
val separatorBytes: ByteString,
val maximumLineBytes: Int,
val allowTruncation: Boolean)
extends GraphStage[FlowShape[ByteString, ByteString]] {
val in = Inlet[ByteString]("DelimiterFramingStage.in")
val out = Outlet[ByteString]("DelimiterFramingStage.out")
override val shape: FlowShape[ByteString, ByteString] = FlowShape(in, out)
override def initialAttributes: Attributes = DefaultAttributes.delimiterFraming
override def toString: String = "DelimiterFraming"
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
new GraphStageLogic(shape) with InHandler with OutHandler {
private val firstSeparatorByte = separatorBytes.head
private var buffer = ByteString.empty
private var nextPossibleMatch = 0
// We use an efficient unsafe array implementation and must be use with caution.
// It contains all indices computed during search phase.
// The capacity is fixed at 256 to preserve fairness and prevent uneccessary allocation during parsing phase.
// This array provide a way to check remaining capacity and must be use to prevent out of bounds exception.
// In this use case, we compute all possibles indices up to 256 and then parse everything.
private val indices = new LightArray[(Int, Int)](256)
override def onPush(): Unit = {
buffer ++= grab(in)
searchIndices()
}
override def onPull(): Unit = searchIndices()
override def onUpstreamFinish(): Unit = {
if (buffer.isEmpty) {
completeStage()
} else if (isAvailable(out)) {
searchIndices()
} // else swallow the termination and wait for pull
}
private def tryPull(): Unit = {
if (isClosed(in)) {
if (allowTruncation) {
push(out, buffer)
completeStage()
} else
failStage(new FramingException("Stream finished but there was a truncated final frame in the buffer"))
} else pull(in)
}
@tailrec
private def searchIndices(): Unit = {
// Next possible position for the delimiter
val possibleMatchPos = buffer.indexOf(firstSeparatorByte, from = nextPossibleMatch)
// Retrive previous position
val previous = indices.lastOption match {
case OptionVal.Some((_, i)) => i + separatorBytes.size
case OptionVal.None => 0
}
if (possibleMatchPos - previous > maximumLineBytes) {
failStage(
new FramingException(
s"Read ${possibleMatchPos - previous} bytes " +
s"which is more than $maximumLineBytes without seeing a line terminator"))
} else if (possibleMatchPos == -1) {
if (buffer.size - previous > maximumLineBytes)
failStage(
new FramingException(
s"Read ${buffer.size - previous} bytes " +
s"which is more than $maximumLineBytes without seeing a line terminator"))
else {
// No matching character, we need to accumulate more bytes into the buffer
nextPossibleMatch = buffer.size
doParse()
}
} else if (possibleMatchPos + separatorBytes.size > buffer.size) {
// We have found a possible match (we found the first character of the terminator
// sequence) but we don't have yet enough bytes. We remember the position to
// retry from next time.
nextPossibleMatch = possibleMatchPos
doParse()
} else if (buffer.slice(possibleMatchPos, possibleMatchPos + separatorBytes.size) == separatorBytes) {
// Found a match, mark start and end position and iterate if possible
indices += (previous -> possibleMatchPos)
nextPossibleMatch = possibleMatchPos + separatorBytes.size
if (nextPossibleMatch == buffer.size || indices.isFull) {
doParse()
} else {
searchIndices()
}
} else {
// possibleMatchPos was not actually a match
nextPossibleMatch += 1
searchIndices()
}
}
private def doParse(): Unit =
if (indices.isEmpty) tryPull()
else if (indices.length == 1) {
// Emit result and compact buffer
val indice = indices(0)
push(out, buffer.slice(indice._1, indice._2).compact)
reset()
if (isClosed(in) && buffer.isEmpty) completeStage()
} else {
// Emit results and compact buffer
emitMultiple(out, new FrameIterator(), () => {
reset()
if (isClosed(in) && buffer.isEmpty) completeStage()
})
}
private def reset(): Unit = {
val previous = indices.lastOption match {
case OptionVal.Some((_, i)) => i + separatorBytes.size
case OptionVal.None => 0
}
buffer = buffer.drop(previous).compact
indices.setLength(0)
nextPossibleMatch = 0
}
// Iterator able to iterate over precompute frame based on start and end position
private class FrameIterator(private var index: Int = 0) extends Iterator[ByteString] {
def hasNext: Boolean = index != indices.length
def next(): ByteString = {
val indice = indices(index)
index += 1
buffer.slice(indice._1, indice._2).compact
}
}
// Basic array implementation that allow unsafe resize.
private class LightArray[T: ClassTag](private val capacity: Int, private var index: Int = 0) {
private val underlying = Array.ofDim[T](capacity)
def apply(i: Int) = underlying(i)
def +=(el: T): Unit = {
underlying(index) = el
index += 1
}
def isEmpty: Boolean = length == 0
def isFull: Boolean = capacity == length
def setLength(length: Int): Unit = index = length
def length: Int = index
def lastOption: OptionVal[T] =
if (index > 0) OptionVal.Some(underlying(index - 1))
else OptionVal.none
}
setHandlers(in, out, this)
}
}
private final class LengthFieldFramingStage(
val lengthFieldLength: Int,
val lengthFieldOffset: Int,
val maximumFrameLength: Int,
val byteOrder: ByteOrder,
computeFrameSize: Option[(Array[Byte], Int) => Int])
extends GraphStage[FlowShape[ByteString, ByteString]] {
//for the sake of binary compatibility
def this(lengthFieldLength: Int, lengthFieldOffset: Int, maximumFrameLength: Int, byteOrder: ByteOrder) {
this(lengthFieldLength, lengthFieldOffset, maximumFrameLength, byteOrder, None)
}
private val minimumChunkSize = lengthFieldOffset + lengthFieldLength
private val intDecoder = byteOrder match {
case ByteOrder.BIG_ENDIAN => bigEndianDecoder
case ByteOrder.LITTLE_ENDIAN => littleEndianDecoder
}
val in = Inlet[ByteString]("LengthFieldFramingStage.in")
val out = Outlet[ByteString]("LengthFieldFramingStage.out")
override val shape: FlowShape[ByteString, ByteString] = FlowShape(in, out)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
new GraphStageLogic(shape) with InHandler with OutHandler {
private var buffer = ByteString.empty
private var frameSize = Int.MaxValue
/**
* push, and reset frameSize and buffer
*
*/
private def pushFrame() = {
val emit = buffer.take(frameSize).compact
buffer = buffer.drop(frameSize)
frameSize = Int.MaxValue
push(out, emit)
if (buffer.isEmpty && isClosed(in)) {
completeStage()
}
}
/**
* try to push downstream, if failed then try to pull upstream
*
*/
private def tryPushFrame() = {
val buffSize = buffer.size
if (buffSize >= frameSize) {
pushFrame()
} else if (buffSize >= minimumChunkSize) {
val parsedLength = intDecoder(buffer.iterator.drop(lengthFieldOffset), lengthFieldLength)
frameSize = computeFrameSize match {
case Some(f) => f(buffer.take(lengthFieldOffset).toArray, parsedLength)
case None => parsedLength + minimumChunkSize
}
if (frameSize > maximumFrameLength) {
failStage(new FramingException(
s"Maximum allowed frame size is $maximumFrameLength but decoded frame header reported size $frameSize"))
} else if (computeFrameSize.isEmpty && parsedLength < 0) {
failStage(new FramingException(s"Decoded frame header reported negative size $parsedLength"))
} else if (frameSize < minimumChunkSize) {
failStage(
new FramingException(
s"Computed frame size $frameSize is less than minimum chunk size $minimumChunkSize"))
} else if (buffSize >= frameSize) {
pushFrame()
} else tryPull()
} else tryPull()
}
private def tryPull() = {
if (isClosed(in)) {
failStage(new FramingException("Stream finished but there was a truncated final frame in the buffer"))
} else pull(in)
}
override def onPush(): Unit = {
buffer ++= grab(in)
tryPushFrame()
}
override def onPull() = tryPushFrame()
override def onUpstreamFinish(): Unit = {
if (buffer.isEmpty) {
completeStage()
} else if (isAvailable(out)) {
tryPushFrame()
} // else swallow the termination and wait for pull
}
setHandlers(in, out, this)
}
}
}