All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.antlr.codegen.templates.Python3.Python3.stg Maven / Gradle / Ivy

/*
 [The "BSD license"]
 Copyright (c) 2005-2012 Terence Parr
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
 3. The name of the author may not be used to endorse or promote products
    derived from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/** The API version of the runtime that recognizers generated by this runtime
 *  need.
 */
apiVersion() ::= "1"

/** The overall file structure of a recognizer; stores methods for rules
 *  and cyclic DFAs plus support code.
 */
outputFile(LEXER,PARSER,TREE_PARSER, actionScope, actions,
           docComment, recognizer,
           name, tokens, tokenNames, rules, cyclicDFAs,
           bitsets, buildTemplate, buildAST, rewriteMode, profile,
           backtracking, synpreds, memoize, numRules,
           fileName, ANTLRVersion, generatedTimestamp, trace,
           scopes, superClass, literals) ::=
<<
# $ANTLR   

<@imports>
import sys
from antlr3 import *

from antlr3.tree import *<\n>

<@end>



 !>

# for convenience in actions
HIDDEN = BaseRecognizer.HIDDEN

# token types
=}; separator="\n">

# token names
tokenNamesMap = {
    0: "\", 1: "\", 2: "\", 3: "\",
    : ""}; wrap, separator=", ">
}
Token.registerTokenNamesMap(tokenNamesMap)






def main(argv, stdin=sys.stdin, stdout=sys.stdout, stderr=sys.stderr):

    from antlr3.main import LexerMain
    main = LexerMain()<\n>


    from antlr3.main import ParserMain
    main = ParserMain("Lexer", )<\n>


    from antlr3.main import WalkerMain
    main = WalkerMain()<\n>

    main.stdin = stdin
    main.stdout = stdout
    main.stderr = stderr
    main.execute(argv)<\n>




if __name__ == '__main__':
    main(sys.argv)

>>

lexer(grammar, name, tokens, scopes, rules, numRules, filterMode,
      labelType="CommonToken", superClass="Lexer") ::= <<

# path hack to allow absolute import of related grammars.
from os.path import dirname
__path__ = [dirname(__file__)]
del dirname

 import }; separator="\n">


class (<@superClassName><@end>):
    }>

    grammarFileName = ""
    api_version = 

    def __init__(self}>, input=None, state=None):
        if state is None:
            state = RecognizerSharedState()
        super().__init__(input, state)



        self._state.ruleMemo = {}



         = (, }>self, input, state)}; separator="\n">
         = self..}; separator="\n">}; separator="\n">
         = }; separator="\n">
        }; separator="\n">
        self.delegates = [}; separator = ", ">]

        }; separator="\n">

        


    



    

    

    }>

     


>>

/** A override of Lexer.nextToken() that backtracks over mTokens() looking
 *  for matches.  No error can be generated upon error; just rewind, consume
 *  a token and then try again.  backtracking needs to be set as well.
 *  Make rule memoization happen only at levels above 1 as we start mTokens
 *  at backtracking==1.
 */
filteringNextToken() ::= <<
def nextToken(self):
    while True:
        if self.input.LA(1) == EOF:
            return self.makeEOFToken()

        self._state.token = None
        self._state.channel = DEFAULT_CHANNEL
        self._state.tokenStartCharIndex = self.input.index()
        self._state.tokenStartCharPositionInLine = self.input.charPositionInLine
        self._state.tokenStartLine = self.input.line
        self._state._text = None
        try:
            m = self.input.mark()
            try:
                # means we won't throw slow exception
                self._state.backtracking = 1
                try:
                    self.mTokens()
                finally:
                    self._state.backtracking = 0

            except BacktrackingFailed:
                # mTokens backtracks with synpred at backtracking==2
                # and we set the synpredgate to allow actions at level 1.
                self.input.rewind(m)
                self.input.consume() # advance one char and try again

            else:
                self.emit()
                return self._state.token

        except RecognitionException as re:
            # shouldn't happen in backtracking mode, but...
            self.reportError(re)
            self.recover(re)


def memoize(self, input, ruleIndex, ruleStartIndex, success):
    if self._state.backtracking > 1:
        # is Lexer always superclass?
        super().memoize(input, ruleIndex, ruleStartIndex, success)


def alreadyParsedRule(self, input, ruleIndex):
    if self._state.backtracking > 1:
        return super().alreadyParsedRule(input, ruleIndex)
    return False


>>

actionGate() ::= "self._state.backtracking == 0"

filteringActionGate() ::= "self._state.backtracking == 1"

/** How to generate a parser */

genericParser(grammar, name, scopes, tokens, tokenNames, rules, numRules,
              bitsets, inputStreamType, superClass, labelType, members,
              rewriteElementType, filterMode, init, ASTLabelType="Object") ::= <<
# token names
tokenNames = [
    "\", "\", "\", "\",
    
]

}>


# path hack to allow absolute import of related grammars.
from os.path import dirname
__path__ = [dirname(__file__)]
del dirname

 import }; separator="\n">


}>

class (<@superClassName><@end>):
    grammarFileName = ""
    api_version = 
    tokenNames = tokenNames

    def __init__(self}>, input, state=None, *args, **kwargs):
        if state is None:
            state = RecognizerSharedState()

        <@args()>
        super().__init__(input, state, *args, **kwargs)



        self._state.ruleMemo = {}



        }; separator="\n">

        }>
        }>

        

         = }; separator="\n">
         = (, }>self, input, state)}; separator="\n">
         = self..}; separator="\n">}; separator="\n">
        }; separator="\n">
        self.delegates = [}; separator = ", ">]

        <@init><@end>


    <@members><@end>

    

    

    
     }; separator="\n">

    }>

     

    _in_ = frozenset([};separator=", ">])<\n>}>

>>

delegateRule(ruleDescriptor) ::= <<
def (self, ):
<\ >   return self..(}; separator=", ">)


>>

parser(grammar, name, scopes, tokens, tokenNames, rules, numRules, bitsets,
       ASTLabelType="Object", superClass="Parser", labelType="Token",
       members={},
       init={}
       ) ::= <<

>>

/** How to generate a tree parser; same as parser except the input
 *  stream is a different type.
 */
treeParser(grammar, name, scopes, tokens, tokenNames, globalAction, rules,
           numRules, bitsets, filterMode, labelType={}, ASTLabelType="Object",
           superClass={TreeRewriterTreeFilterTreeParser},
           members={},
           init={}
           ) ::= <<

>>

/** A simpler version of a rule template that is specific to the imaginary
 *  rules created for syntactic predicates.  As they never have return values
 *  nor parameters etc..., just give simplest possible method.  Don't do
 *  any of the normal memoization stuff in here either; it's a waste.
 *  As predicates cannot be inlined into the invoking rule, they need to
 *  be in a rule by themselves.
 */
synpredRule(ruleName, ruleDescriptor, block, description, nakedBlock) ::=
<<
# $ANTLR start ""
def _fragment(self, ):
    

    self.traceIn("_fragment", )
    try:
        

    finally:
        self.traceOut("_fragment", )


    

# $ANTLR end ""


>>

synpred(name) ::= <<
def (self):
    self._state.backtracking += 1
    <@start()>
    start = self.input.mark()
    try:
        self._fragment()
    except BacktrackingFailed:
        success = False
    else:
        success = True
    self.input.rewind(start)
    <@stop()>
    self._state.backtracking -= 1
    return success


>>

lexerSynpred(name) ::= <<

>>

ruleMemoization(name) ::= <<

if self._state.backtracking > 0 and self.alreadyParsedRule(self.input, ):
    # for cached failed rules, alreadyParsedRule will raise an exception
    success = True
    return 


>>

/** This rule has failed, exit indicating failure during backtrack */
ruleBacktrackFailure() ::= <<

if self._state.backtracking > 0:
    raise BacktrackingFailed


>>

/** How to generate code for a rule.  This includes any return type
 *  data aggregates required for multiple return values.
 */
rule(ruleName,ruleDescriptor,block,emptyRule,description,exceptions,finally,memoize) ::= <<


# $ANTLR start ""
# :

def (self, ):

    self.traceIn("", )<\n>

    
    
    
    
    <@preamble()>
    <@body><@end>
    <@postamble()>
    return 

# $ANTLR end ""
>>

ruleBody() ::= <<


success = False<\n>


try:
    try:
        
        
        
        <(ruleDescriptor.actions.after):execAction()>



        success = True<\n>



    <\n>}>



    

    except RecognitionException as re:
        self.reportError(re)
        self.recover(self.input, re)
        <@setErrorReturnValue()>



    finally:
        pass



finally:

    self.traceOut("", )<\n>

    
    
    
    pass
>>

catch(decl,action) ::= <<
except :
    

>>

ruleDeclarations() ::= <<

retval = self._return()
retval.start = self.input.LT(1)<\n>

 = None
}>


_StartIndex = self.input.index()

>>

ruleScopeSetUp() ::= <<
_stack.append(_scope())}; separator="\n">
_stack.append(_scope())}; separator="\n">
>>

ruleScopeCleanUp() ::= <<
_stack.pop()}; separator="\n">
_stack.pop()}; separator="\n">
>>

ruleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,ruleDescriptor.tokenListLabels,
  ruleDescriptor.wildcardTreeLabels,ruleDescriptor.wildcardTreeListLabels]
    :{it |  = None}; separator="\n"
>
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels,
  ruleDescriptor.wildcardTreeListLabels]
    :{it | list_ = None}; separator="\n"
>

 = None}; separator="\n">
>>

lexerRuleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,
  ruleDescriptor.tokenListLabels,
  ruleDescriptor.ruleLabels]
    :{it |  = None}; separator="\n"
>
 = None}; separator="\n">
<[ruleDescriptor.tokenListLabels,
  ruleDescriptor.ruleListLabels]
    :{it | list_ = None}; separator="\n"
>
>>

ruleReturnValue() ::= <%





retval



%>

ruleCleanUp() ::= <<


retval.stop = self.input.LT(-1)<\n>


>>

memoize() ::= <<


if self._state.backtracking > 0:
    self.memoize(self.input, , _StartIndex, success)



>>

/** How to generate a rule in the lexer; naked blocks are used for
 *  fragment rules.
 */
lexerRule(ruleName,nakedBlock,ruleDescriptor,block,memoize) ::= <<
# $ANTLR start ""
def m(self, ):

    self.traceIn("", )<\n>

    
    


    success = False<\n>


    try:

        
        
        
        <\n>

        _type = 
        _channel = DEFAULT_CHANNEL

        
        
        
        
        
        self._state.type = _type
        self._state.channel = _channel
        <(ruleDescriptor.actions.after):execAction()>



        success = True<\n>



    finally:

        self.traceOut("", )<\n>

        
        
        pass

# $ANTLR end ""


>>

/** How to generate code for the implicitly-defined lexer grammar rule
 *  that chooses between lexer rules.
 */
tokensRule(ruleName,nakedBlock,args,block,ruleDescriptor) ::= <<
def mTokens(self):
    <\n>


>>

// S U B R U L E S

/** A (...) subrule with multiple alternatives */
block(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
# :
alt = 

<@body><@end>
>>

blockBody() ::= <<
<@predecision()>
<@decision><@end>
<@postdecision()>
<@prebranch()>
}; separator="\nel">
<@postbranch()>
>>

/** A rule block with multiple alternatives */
ruleBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
# :
alt = 

<@predecision()>
<@decision><@end>
<@postdecision()>
}; separator="\nel">
>>

ruleBlockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
# :

<@prealt()>

<@postalt()>
>>

/** A special case of a (...) subrule with a single alternative */
blockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
# :

<@prealt()>

<@postalt()>
>>

/** A (..)+ block with 1 or more alternatives */
positiveClosureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
# :
cnt = 0

<@preloop()>
<@loopBody>

<@end>
<@postloop()>
>>

positiveClosureBlockLoop() ::= <<
while True: #loop
    alt = 
    <@predecision()>
    <@decisionBody><@end>
    <@postdecision()>
    }; separator="\nel">
    else:
        if cnt >= 1:
            break #loop

        
        eee = EarlyExitException(, self.input)
        <@earlyExitException()>
        raise eee

    cnt += 1
>>

positiveClosureBlockSingleAlt ::= positiveClosureBlock

/** A (..)* block with 1 or more alternatives */
closureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
# :

<@preloop()>
<@loopBody>

<@end>
<@postloop()>
>>

closureBlockLoop() ::= <<
while True: #loop
    alt = 
    <@predecision()>
    <@decisionBody><@end>
    <@postdecision()>
    }; separator="\nel">
    else:
        break #loop
>>

closureBlockSingleAlt ::= closureBlock

/** Optional blocks (x)? are translated to (x|) by before code generation
 *  so we can just use the normal block template
 */
optionalBlock ::= block

optionalBlockSingleAlt ::= block

/** A case in a switch that jumps to an alternative given the alternative
 *  number.  A DFA predicts the alternative and then a simple switch
 *  does the jump to the code that actually matches that alternative.
 */
altSwitchCase(altNum,alt) ::= <<
if alt == :
    <@prealt()>
    
>>

/** An alternative is just a list of elements; at outermost level */
alt(elements,altNum,description,autoAST,outerAlt, treeLevel,rew) ::= <<
# :
pass 
<@declarations()>


<@cleanup()>
>>

/** What to emit when there is no rewrite.  For auto build
 *  mode, does nothing.
 */
noRewrite(rewriteBlockLevel, treeLevel) ::= ""

// E L E M E N T S

/** Dump the elements one per line */
element(e) ::= <<
<@prematch()>
<\n>
>>

/** match a token optionally with a label in front */
tokenRef(token,label,elementIndex,terminalOptions={}) ::= <<