All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.imgproc.LineSegmentDetector Maven / Gradle / Ivy

//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.imgproc;

import org.opencv.core.Algorithm;
import org.opencv.core.Mat;
import org.opencv.core.Size;

// C++: class LineSegmentDetector
/**
 * Line segment detector class
 * 

* following the algorithm described at CITE: Rafael12 . * * Note: Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict. * restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license. */ public class LineSegmentDetector extends Algorithm { protected LineSegmentDetector(long addr) { super(addr); } // internal usage only public static LineSegmentDetector __fromPtr__(long addr) { return new LineSegmentDetector(addr); } // // C++: void cv::LineSegmentDetector::detect(Mat image, Mat& lines, Mat& width = Mat(), Mat& prec = Mat(), Mat& nfa = Mat()) // /** * Finds lines in the input image. * * This is the output of the default parameters of the algorithm on the above shown image. * * ![image](pics/building_lsd.png) * * @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: * {@code lsd_ptr->detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);} * @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where * Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly * oriented depending on the gradient. * @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. * @param prec Vector of precisions with which the lines are found. * @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The * bigger the value, logarithmically better the detection. *

    *
  • * -1 corresponds to 10 mean false alarms *
  • *
  • * 0 corresponds to 1 mean false alarm *
  • *
  • * 1 corresponds to 0.1 mean false alarms * This vector will be calculated only when the objects type is #LSD_REFINE_ADV. *
  • *
*/ public void detect(Mat image, Mat lines, Mat width, Mat prec, Mat nfa) { detect_0(nativeObj, image.nativeObj, lines.nativeObj, width.nativeObj, prec.nativeObj, nfa.nativeObj); } /** * Finds lines in the input image. * * This is the output of the default parameters of the algorithm on the above shown image. * * ![image](pics/building_lsd.png) * * @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: * {@code lsd_ptr->detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);} * @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where * Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly * oriented depending on the gradient. * @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. * @param prec Vector of precisions with which the lines are found. * bigger the value, logarithmically better the detection. *
    *
  • * -1 corresponds to 10 mean false alarms *
  • *
  • * 0 corresponds to 1 mean false alarm *
  • *
  • * 1 corresponds to 0.1 mean false alarms * This vector will be calculated only when the objects type is #LSD_REFINE_ADV. *
  • *
*/ public void detect(Mat image, Mat lines, Mat width, Mat prec) { detect_1(nativeObj, image.nativeObj, lines.nativeObj, width.nativeObj, prec.nativeObj); } /** * Finds lines in the input image. * * This is the output of the default parameters of the algorithm on the above shown image. * * ![image](pics/building_lsd.png) * * @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: * {@code lsd_ptr->detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);} * @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where * Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly * oriented depending on the gradient. * @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. * bigger the value, logarithmically better the detection. *
    *
  • * -1 corresponds to 10 mean false alarms *
  • *
  • * 0 corresponds to 1 mean false alarm *
  • *
  • * 1 corresponds to 0.1 mean false alarms * This vector will be calculated only when the objects type is #LSD_REFINE_ADV. *
  • *
*/ public void detect(Mat image, Mat lines, Mat width) { detect_2(nativeObj, image.nativeObj, lines.nativeObj, width.nativeObj); } /** * Finds lines in the input image. * * This is the output of the default parameters of the algorithm on the above shown image. * * ![image](pics/building_lsd.png) * * @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: * {@code lsd_ptr->detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);} * @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where * Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly * oriented depending on the gradient. * bigger the value, logarithmically better the detection. *
    *
  • * -1 corresponds to 10 mean false alarms *
  • *
  • * 0 corresponds to 1 mean false alarm *
  • *
  • * 1 corresponds to 0.1 mean false alarms * This vector will be calculated only when the objects type is #LSD_REFINE_ADV. *
  • *
*/ public void detect(Mat image, Mat lines) { detect_3(nativeObj, image.nativeObj, lines.nativeObj); } // // C++: void cv::LineSegmentDetector::drawSegments(Mat& image, Mat lines) // /** * Draws the line segments on a given image. * @param image The image, where the lines will be drawn. Should be bigger or equal to the image, * where the lines were found. * @param lines A vector of the lines that needed to be drawn. */ public void drawSegments(Mat image, Mat lines) { drawSegments_0(nativeObj, image.nativeObj, lines.nativeObj); } // // C++: int cv::LineSegmentDetector::compareSegments(Size size, Mat lines1, Mat lines2, Mat& image = Mat()) // /** * Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. * * @param size The size of the image, where lines1 and lines2 were found. * @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. * @param lines2 The second group of lines. They visualized in red color. * @param image Optional image, where the lines will be drawn. The image should be color(3-channel) * in order for lines1 and lines2 to be drawn in the above mentioned colors. * @return automatically generated */ public int compareSegments(Size size, Mat lines1, Mat lines2, Mat image) { return compareSegments_0(nativeObj, size.width, size.height, lines1.nativeObj, lines2.nativeObj, image.nativeObj); } /** * Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. * * @param size The size of the image, where lines1 and lines2 were found. * @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. * @param lines2 The second group of lines. They visualized in red color. * in order for lines1 and lines2 to be drawn in the above mentioned colors. * @return automatically generated */ public int compareSegments(Size size, Mat lines1, Mat lines2) { return compareSegments_1(nativeObj, size.width, size.height, lines1.nativeObj, lines2.nativeObj); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: void cv::LineSegmentDetector::detect(Mat image, Mat& lines, Mat& width = Mat(), Mat& prec = Mat(), Mat& nfa = Mat()) private static native void detect_0(long nativeObj, long image_nativeObj, long lines_nativeObj, long width_nativeObj, long prec_nativeObj, long nfa_nativeObj); private static native void detect_1(long nativeObj, long image_nativeObj, long lines_nativeObj, long width_nativeObj, long prec_nativeObj); private static native void detect_2(long nativeObj, long image_nativeObj, long lines_nativeObj, long width_nativeObj); private static native void detect_3(long nativeObj, long image_nativeObj, long lines_nativeObj); // C++: void cv::LineSegmentDetector::drawSegments(Mat& image, Mat lines) private static native void drawSegments_0(long nativeObj, long image_nativeObj, long lines_nativeObj); // C++: int cv::LineSegmentDetector::compareSegments(Size size, Mat lines1, Mat lines2, Mat& image = Mat()) private static native int compareSegments_0(long nativeObj, double size_width, double size_height, long lines1_nativeObj, long lines2_nativeObj, long image_nativeObj); private static native int compareSegments_1(long nativeObj, double size_width, double size_height, long lines1_nativeObj, long lines2_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy