org.apache.activemq.artemis.utils.collections.ConcurrentLongHashMap Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.activemq.artemis.utils.collections;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
import java.util.concurrent.locks.StampedLock;
import java.util.function.LongFunction;
import static org.apache.activemq.artemis.utils.Preconditions.checkArgument;
import static org.apache.activemq.artemis.utils.Preconditions.checkNotNull;
/**
* Map from long to an Object.
*
* Provides similar methods as a {@literal ConcurrentMap} with 2 differences:
*
* - No boxing/unboxing from {@literal long -> Long}
*
- Open hash map with linear probing, no node allocations to store the values
*
*
* @param
*/
@SuppressWarnings("unchecked")
public class ConcurrentLongHashMap {
private static final Object EmptyValue = null;
private static final Object DeletedValue = new Object();
private static final float MapFillFactor = 0.66f;
private static final int DefaultExpectedItems = 256;
private static final int DefaultConcurrencyLevel = 16;
private final Section[] sections;
public ConcurrentLongHashMap() {
this(DefaultExpectedItems);
}
public ConcurrentLongHashMap(int expectedItems) {
this(expectedItems, DefaultConcurrencyLevel);
}
public ConcurrentLongHashMap(int expectedItems, int numSections) {
checkArgument(numSections > 0);
if (expectedItems < numSections) {
expectedItems = numSections;
}
int perSectionExpectedItems = expectedItems / numSections;
int perSectionCapacity = (int) (perSectionExpectedItems / MapFillFactor);
this.sections = (Section[]) new Section[numSections];
for (int i = 0; i < numSections; i++) {
sections[i] = new Section<>(perSectionCapacity);
}
}
public int size() {
int size = 0;
for (Section s : sections) {
//read-acquire s.size that was write-released by s.unlockWrite
s.tryOptimisticRead();
//a stale value won't hurt: anyway it's subject to concurrent modifications
size += s.size;
}
return size;
}
long getUsedBucketCount() {
long usedBucketCount = 0;
for (Section s : sections) {
usedBucketCount += s.usedBuckets;
}
return usedBucketCount;
}
public long capacity() {
long capacity = 0;
for (Section s : sections) {
capacity += s.capacity;
}
return capacity;
}
public boolean isEmpty() {
for (Section s : sections) {
//read-acquire s.size that was write-released by s.unlockWrite
s.tryOptimisticRead();
//a stale value won't hurt: anyway it's subject to concurrent modifications
if (s.size != 0) {
return false;
}
}
return true;
}
public V get(long key) {
long h = hash(key);
return getSection(h).get(key, (int) h);
}
public boolean containsKey(long key) {
return get(key) != null;
}
public V put(long key, V value) {
checkNotNull(value);
long h = hash(key);
return getSection(h).put(key, value, (int) h, false, null);
}
public V putIfAbsent(long key, V value) {
checkNotNull(value);
long h = hash(key);
return getSection(h).put(key, value, (int) h, true, null);
}
public V computeIfAbsent(long key, LongFunction provider) {
checkNotNull(provider);
long h = hash(key);
return getSection(h).put(key, null, (int) h, true, provider);
}
public V remove(long key) {
long h = hash(key);
return getSection(h).remove(key, null, (int) h);
}
public boolean remove(long key, Object value) {
checkNotNull(value);
long h = hash(key);
return getSection(h).remove(key, value, (int) h) != null;
}
private Section getSection(long hash) {
// Use 32 msb out of long to get the section
final int sectionIdx = (int) (hash >>> 32) & (sections.length - 1);
return sections[sectionIdx];
}
public void clear() {
for (Section s : sections) {
s.clear();
}
}
public void forEach(EntryProcessor processor) {
for (Section s : sections) {
s.forEach(processor);
}
}
/**
* @return a new list of all keys (makes a copy)
*/
public List keys() {
List keys = new ArrayList<>(size());
forEach((key, value) -> keys.add(key));
return keys;
}
public ConcurrentLongHashSet keysLongHashSet() {
ConcurrentLongHashSet concurrentLongHashSet = new ConcurrentLongHashSet(size());
forEach((key, value) -> concurrentLongHashSet.add(key));
return concurrentLongHashSet;
}
public List values() {
List values = new ArrayList<>(size());
forEach((key, value) -> values.add(value));
return values;
}
public interface EntryProcessor {
void accept(long key, V value);
}
// A section is a portion of the hash map that is covered by a single
@SuppressWarnings("serial")
private static final class Section extends StampedLock {
private static final AtomicIntegerFieldUpdater CAPACITY_UPDATER = AtomicIntegerFieldUpdater.newUpdater(Section.class, "capacity");
private long[] keys;
private V[] values;
private volatile int capacity;
private int size;
private int usedBuckets;
private int resizeThreshold;
Section(int capacity) {
this.capacity = alignToPowerOfTwo(capacity);
this.keys = new long[this.capacity];
this.values = (V[]) new Object[this.capacity];
this.size = 0;
this.usedBuckets = 0;
this.resizeThreshold = (int) (this.capacity * MapFillFactor);
}
@SuppressWarnings("NonAtomicVolatileUpdate")
V get(long key, int keyHash) {
int bucket = keyHash;
long stamp = tryOptimisticRead();
boolean acquiredLock = false;
try {
while (true) {
int capacity = this.capacity;
bucket = signSafeMod(bucket, capacity);
// First try optimistic locking
long storedKey = keys[bucket];
V storedValue = values[bucket];
if (!acquiredLock && validate(stamp)) {
// The values we have read are consistent
if (storedKey == key) {
return storedValue != DeletedValue ? storedValue : null;
} else if (storedValue == EmptyValue) {
// Not found
return null;
}
} else {
// Fallback to acquiring read lock
if (!acquiredLock) {
stamp = readLock();
acquiredLock = true;
storedKey = keys[bucket];
storedValue = values[bucket];
}
if (capacity != this.capacity) {
// There has been a rehashing. We need to restart the search
bucket = keyHash;
continue;
}
if (storedKey == key) {
return storedValue != DeletedValue ? storedValue : null;
} else if (storedValue == EmptyValue) {
// Not found
return null;
}
}
++bucket;
}
} finally {
if (acquiredLock) {
unlockRead(stamp);
}
}
}
@SuppressWarnings("NonAtomicVolatileUpdate")
V put(long key, V value, int keyHash, boolean onlyIfAbsent, LongFunction valueProvider) {
int bucket = keyHash;
long stamp = writeLock();
int capacity = this.capacity;
// Remember where we find the first available spot
int firstDeletedKey = -1;
try {
while (true) {
bucket = signSafeMod(bucket, capacity);
long storedKey = keys[bucket];
V storedValue = values[bucket];
if (storedKey == key) {
if (storedValue == EmptyValue) {
values[bucket] = value != null ? value : (valueProvider != null ? valueProvider.apply(key) : null);
++size;
++usedBuckets;
return valueProvider != null ? values[bucket] : null;
} else if (storedValue == DeletedValue) {
values[bucket] = value != null ? value : (valueProvider != null ? valueProvider.apply(key) : null);
++size;
return valueProvider != null ? values[bucket] : null;
} else if (!onlyIfAbsent) {
// Over written an old value for same key
values[bucket] = value;
return storedValue;
} else {
return storedValue;
}
} else if (storedValue == EmptyValue) {
// Found an empty bucket. This means the key is not in the map. If we've already seen a deleted
// key, we should write at that position
if (firstDeletedKey != -1) {
bucket = firstDeletedKey;
} else {
++usedBuckets;
}
keys[bucket] = key;
values[bucket] = value != null ? value : (valueProvider != null ? valueProvider.apply(key) : null);
++size;
return valueProvider != null ? values[bucket] : null;
} else if (storedValue == DeletedValue) {
// The bucket contained a different deleted key
if (firstDeletedKey == -1) {
firstDeletedKey = bucket;
}
}
++bucket;
}
} finally {
if (usedBuckets > resizeThreshold) {
try {
rehash();
} finally {
unlockWrite(stamp);
}
} else {
unlockWrite(stamp);
}
}
}
@SuppressWarnings("NonAtomicVolatileUpdate")
private V remove(long key, Object value, int keyHash) {
int bucket = keyHash;
long stamp = writeLock();
try {
while (true) {
int capacity = this.capacity;
bucket = signSafeMod(bucket, capacity);
long storedKey = keys[bucket];
V storedValue = values[bucket];
if (storedKey == key) {
if (value == null || value.equals(storedValue)) {
if (storedValue == EmptyValue || storedValue == DeletedValue) {
return null;
}
--size;
V nextValueInArray = values[signSafeMod(bucket + 1, capacity)];
if (nextValueInArray == EmptyValue) {
values[bucket] = (V) EmptyValue;
--usedBuckets;
} else {
values[bucket] = (V) DeletedValue;
}
return storedValue;
} else {
return null;
}
} else if (storedValue == EmptyValue) {
// Key wasn't found
return null;
}
++bucket;
}
} finally {
unlockWrite(stamp);
}
}
void clear() {
long stamp = writeLock();
try {
Arrays.fill(keys, 0);
Arrays.fill(values, EmptyValue);
this.size = 0;
this.usedBuckets = 0;
} finally {
unlockWrite(stamp);
}
}
public void forEach(EntryProcessor processor) {
long stamp = tryOptimisticRead();
int capacity = this.capacity;
long[] keys = this.keys;
V[] values = this.values;
boolean acquiredReadLock = false;
try {
// Validate no rehashing
if (!validate(stamp)) {
// Fallback to read lock
stamp = readLock();
acquiredReadLock = true;
capacity = this.capacity;
keys = this.keys;
values = this.values;
}
// Go through all the buckets for this section
for (int bucket = 0; bucket < capacity; bucket++) {
long storedKey = keys[bucket];
V storedValue = values[bucket];
if (!acquiredReadLock && !validate(stamp)) {
// Fallback to acquiring read lock
stamp = readLock();
acquiredReadLock = true;
storedKey = keys[bucket];
storedValue = values[bucket];
}
if (storedValue != DeletedValue && storedValue != EmptyValue) {
processor.accept(storedKey, storedValue);
}
}
} finally {
if (acquiredReadLock) {
unlockRead(stamp);
}
}
}
private void rehash() {
// Expand the hashmap
int newCapacity = capacity * 2;
long[] newKeys = new long[newCapacity];
V[] newValues = (V[]) new Object[newCapacity];
// Re-hash table
for (int i = 0; i < keys.length; i++) {
long storedKey = keys[i];
V storedValue = values[i];
if (storedValue != EmptyValue && storedValue != DeletedValue) {
insertKeyValueNoLock(newKeys, newValues, storedKey, storedValue);
}
}
keys = newKeys;
values = newValues;
usedBuckets = size;
CAPACITY_UPDATER.lazySet(this, newCapacity);
resizeThreshold = (int) (newCapacity * MapFillFactor);
}
private static void insertKeyValueNoLock(long[] keys, V[] values, long key, V value) {
int bucket = (int) hash(key);
while (true) {
bucket = signSafeMod(bucket, keys.length);
V storedValue = values[bucket];
if (storedValue == EmptyValue) {
// The bucket is empty, so we can use it
keys[bucket] = key;
values[bucket] = value;
return;
}
++bucket;
}
}
}
private static final long HashMixer = 0xc6a4a7935bd1e995L;
private static final int R = 47;
static long hash(long key) {
long hash = key * HashMixer;
hash ^= hash >>> R;
hash *= HashMixer;
return hash;
}
static int signSafeMod(long n, int Max) {
return (int) n & (Max - 1);
}
static int alignToPowerOfTwo(int n) {
return (int) Math.pow(2, 32 - Integer.numberOfLeadingZeros(n - 1));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy