All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.activemq.artemis.shaded.io.netty.util.internal.shaded.org.jctools.maps.NonBlockingHashMap Maven / Gradle / Ivy

There is a newer version: 2.33.0
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.activemq.artemis.shaded.io.netty.util.internal.shaded.org.jctools.maps;

import java.io.IOException;
import java.io.Serializable;
import java.util.*;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicLongFieldUpdater;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;

import org.apache.activemq.artemis.shaded.io.netty.util.internal.shaded.org.jctools.util.RangeUtil;

import static org.apache.activemq.artemis.shaded.io.netty.util.internal.shaded.org.jctools.util.UnsafeAccess.UNSAFE;
import static org.apache.activemq.artemis.shaded.io.netty.util.internal.shaded.org.jctools.util.UnsafeAccess.fieldOffset;

/**
 * A lock-free alternate implementation of {@link java.util.concurrent.ConcurrentHashMap}
 * with better scaling properties and generally lower costs to mutate the Map.
 * It provides identical correctness properties as ConcurrentHashMap.  All
 * operations are non-blocking and multi-thread safe, including all update
 * operations.  {@link NonBlockingHashMap} scales substantially better than
 * {@link java.util.concurrent.ConcurrentHashMap} for high update rates, even with a
 * large concurrency factor.  Scaling is linear up to 768 CPUs on a 768-CPU
 * Azul box, even with 100% updates or 100% reads or any fraction in-between.
 * Linear scaling up to all cpus has been observed on a 32-way Sun US2 box,
 * 32-way Sun Niagara box, 8-way Intel box and a 4-way Power box.
 *
 * This class obeys the same functional specification as {@link
 * java.util.Hashtable}, and includes versions of methods corresponding to
 * each method of Hashtable. However, even though all operations are
 * thread-safe, operations do not entail locking and there is
 * not any support for locking the entire table in a way that
 * prevents all access.  This class is fully interoperable with
 * Hashtable in programs that rely on its thread safety but not on
 * its synchronization details.
 *
 * 

Operations (including put) generally do not block, so may * overlap with other update operations (including other puts and * removes). Retrievals reflect the results of the most recently * completed update operations holding upon their onset. For * aggregate operations such as putAll, concurrent retrievals may * reflect insertion or removal of only some entries. Similarly, Iterators * and Enumerations return elements reflecting the state of the hash table at * some point at or since the creation of the iterator/enumeration. They do * not throw {@link ConcurrentModificationException}. However, * iterators are designed to be used by only one thread at a time. * *

Very full tables, or tables with high re-probe rates may trigger an * internal resize operation to move into a larger table. Resizing is not * terribly expensive, but it is not free either; during resize operations * table throughput may drop somewhat. All threads that visit the table * during a resize will 'help' the resizing but will still be allowed to * complete their operation before the resize is finished (i.e., a simple * 'get' operation on a million-entry table undergoing resizing will not need * to block until the entire million entries are copied). * *

This class and its views and iterators implement all of the * optional methods of the {@link Map} and {@link Iterator} * interfaces. * *

Like {@link Hashtable} but unlike {@link HashMap}, this class * does not allow null to be used as a key or value. * * * @since 1.5 * @author Cliff Click * @param the type of keys maintained by this map * @param the type of mapped values */ public class NonBlockingHashMap extends AbstractMap implements ConcurrentMap, Cloneable, Serializable { private static final long serialVersionUID = 1234123412341234123L; private static final int REPROBE_LIMIT=10; // Too many reprobes then force a table-resize // --- Bits to allow Unsafe access to arrays private static final int _Obase = UNSAFE.arrayBaseOffset(Object[].class); private static final int _Oscale = UNSAFE.arrayIndexScale(Object[].class); private static final int _Olog = _Oscale==4?2:(_Oscale==8?3:9999); private static long rawIndex(final Object[] ary, final int idx) { assert idx >= 0 && idx < ary.length; // Note the long-math requirement, to handle arrays of more than 2^31 bytes // - or 2^28 - or about 268M - 8-byte pointer elements. return _Obase + ((long)idx << _Olog); } // --- Setup to use Unsafe private static final long _kvs_offset = fieldOffset(NonBlockingHashMap.class, "_kvs"); private final boolean CAS_kvs( final Object[] oldkvs, final Object[] newkvs ) { return UNSAFE.compareAndSwapObject(this, _kvs_offset, oldkvs, newkvs ); } // --- Adding a 'prime' bit onto Values via wrapping with a junk wrapper class private static final class Prime { final Object _V; Prime( Object V ) { _V = V; } static Object unbox( Object V ) { return V instanceof Prime ? ((Prime)V)._V : V; } } // --- hash ---------------------------------------------------------------- // Helper function to spread lousy hashCodes. Throws NPE for null Key, on // purpose - as the first place to conveniently toss the required NPE for a // null Key. private static final int hash(final Object key) { int h = key.hashCode(); // The real hashCode call h ^= (h>>>20) ^ (h>>>12); h ^= (h>>> 7) ^ (h>>> 4); h += h<<7; // smear low bits up high, for hashcodes that only differ by 1 return h; } // --- The Hash Table -------------------- // Slot 0 is always used for a 'CHM' entry below to hold the interesting // bits of the hash table. Slot 1 holds full hashes as an array of ints. // Slots {2,3}, {4,5}, etc hold {Key,Value} pairs. The entire hash table // can be atomically replaced by CASing the _kvs field. // // Why is CHM buried inside the _kvs Object array, instead of the other way // around? The CHM info is used during resize events and updates, but not // during standard 'get' operations. I assume 'get' is much more frequent // than 'put'. 'get' can skip the extra indirection of skipping through the // CHM to reach the _kvs array. private transient Object[] _kvs; private static final CHM chm (Object[] kvs) { return (CHM )kvs[0]; } private static final int[] hashes(Object[] kvs) { return (int[])kvs[1]; } // Number of K,V pairs in the table private static final int len(Object[] kvs) { return (kvs.length-2)>>1; } // Time since last resize private transient long _last_resize_milli; // --- Minimum table size ---------------- // Pick size 8 K/V pairs, which turns into (8*2+2)*4+12 = 84 bytes on a // standard 32-bit HotSpot, and (8*2+2)*8+12 = 156 bytes on 64-bit Azul. private static final int MIN_SIZE_LOG=3; // private static final int MIN_SIZE=(1<>4); } // --- NonBlockingHashMap -------------------------------------------------- // Constructors /** Create a new NonBlockingHashMap with default minimum size (currently set * to 8 K/V pairs or roughly 84 bytes on a standard 32-bit JVM). */ public NonBlockingHashMap( ) { this(MIN_SIZE); } /** Create a new NonBlockingHashMap with initial room for the given number of * elements, thus avoiding internal resizing operations to reach an * appropriate size. Large numbers here when used with a small count of * elements will sacrifice space for a small amount of time gained. The * initial size will be rounded up internally to the next larger power of 2. */ public NonBlockingHashMap( final int initial_sz ) { initialize(initial_sz); } private final void initialize( int initial_sz ) { RangeUtil.checkPositiveOrZero(initial_sz, "initial_sz"); int i; // Convert to next largest power-of-2 if( initial_sz > 1024*1024 ) initial_sz = 1024*1024; for( i=MIN_SIZE_LOG; (1<size() == 0. * @return size() == 0 */ @Override public boolean isEmpty ( ) { return size() == 0; } /** Tests if the key in the table using the equals method. * @return true if the key is in the table using the equals method * @throws NullPointerException if the specified key is null */ @Override public boolean containsKey( Object key ) { return get(key) != null; } /** Legacy method testing if some key maps into the specified value in this * table. This method is identical in functionality to {@link * #containsValue}, and exists solely to ensure full compatibility with * class {@link java.util.Hashtable}, which supported this method prior to * introduction of the Java Collections framework. * @param val a value to search for * @return true if this map maps one or more keys to the specified value * @throws NullPointerException if the specified value is null */ public boolean contains ( Object val ) { return containsValue(val); } /** Maps the specified key to the specified value in the table. Neither key * nor value can be null. *

The value can be retrieved by calling {@link #get} with a key that is * equal to the original key. * @param key key with which the specified value is to be associated * @param val value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key or value is null */ @Override public TypeV put ( TypeK key, TypeV val ) { return putIfMatch( key, val, NO_MATCH_OLD); } /** Atomically, do a {@link #put} if-and-only-if the key is not mapped. * Useful to ensure that only a single mapping for the key exists, even if * many threads are trying to create the mapping in parallel. * @return the previous value associated with the specified key, * or null if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @Override public TypeV putIfAbsent( TypeK key, TypeV val ) { return putIfMatch( key, val, TOMBSTONE ); } /** Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key is null */ @Override public TypeV remove ( Object key ) { return putIfMatch( key,TOMBSTONE, NO_MATCH_OLD); } /** Atomically do a {@link #remove(Object)} if-and-only-if the key is mapped * to a value which is equals to the given value. * @throws NullPointerException if the specified key or value is null */ public boolean remove ( Object key,Object val ) { return objectsEquals(putIfMatch( key,TOMBSTONE, val ), val); } /** Atomically do a put(key,val) if-and-only-if the key is * mapped to some value already. * @throws NullPointerException if the specified key or value is null */ @Override public TypeV replace ( TypeK key, TypeV val ) { return putIfMatch( key, val,MATCH_ANY ); } /** Atomically do a put(key,newValue) if-and-only-if the key is * mapped a value which is equals to oldValue. * @throws NullPointerException if the specified key or value is null */ @Override public boolean replace ( TypeK key, TypeV oldValue, TypeV newValue ) { return objectsEquals(putIfMatch( key, newValue, oldValue ), oldValue); } private static boolean objectsEquals(Object a, Object b) { return (a == b) || (a != null && a.equals(b)); } // Atomically replace newVal for oldVal, returning the value that existed // there before. If the oldVal matches the returned value, then newVal was // inserted, otherwise not. A null oldVal means the key does not exist (only // insert if missing); a null newVal means to remove the key. public final TypeV putIfMatchAllowNull( Object key, Object newVal, Object oldVal ) { if( oldVal == null ) oldVal = TOMBSTONE; if( newVal == null ) newVal = TOMBSTONE; final TypeV res = (TypeV) putIfMatch0(this, _kvs, key, newVal, oldVal ); assert !(res instanceof Prime); //assert res != null; return res == TOMBSTONE ? null : res; } /** Atomically replace newVal for oldVal, returning the value that existed * there before. If the oldVal matches the returned value, then newVal was * inserted, otherwise not. * @return the previous value associated with the specified key, * or null if there was no mapping for the key * @throws NullPointerException if the key or either value is null */ public final TypeV putIfMatch( Object key, Object newVal, Object oldVal ) { if (oldVal == null || newVal == null) throw new NullPointerException(); final Object res = putIfMatch0(this, _kvs, key, newVal, oldVal ); assert !(res instanceof Prime); assert res != null; return res == TOMBSTONE ? null : (TypeV)res; } /** Copies all of the mappings from the specified map to this one, replacing * any existing mappings. * @param m mappings to be stored in this map */ @Override public void putAll(Map m) { for (Map.Entry e : m.entrySet()) put(e.getKey(), e.getValue()); } /** Removes all of the mappings from this map. */ @Override public void clear() { // Smack a new empty table down Object[] newkvs = new NonBlockingHashMap(MIN_SIZE)._kvs; while( !CAS_kvs(_kvs,newkvs) ) // Spin until the clear works ; } /** Returns true if this Map maps one or more keys to the specified * value. Note: This method requires a full internal traversal of the * hash table and is much slower than {@link #containsKey}. * @param val value whose presence in this map is to be tested * @return true if this map maps one or more keys to the specified value * @throws NullPointerException if the specified value is null */ @Override public boolean containsValue( final Object val ) { if( val == null ) throw new NullPointerException(); for( TypeV V : values() ) if( V == val || V.equals(val) ) return true; return false; } // This function is supposed to do something for Hashtable, and the JCK // tests hang until it gets called... by somebody ... for some reason, // any reason.... protected void rehash() { } /** * Creates a shallow copy of this hashtable. All the structure of the * hashtable itself is copied, but the keys and values are not cloned. * This is a relatively expensive operation. * * @return a clone of the hashtable. */ @Override public Object clone() { try { // Must clone, to get the class right; NBHM might have been // extended so it would be wrong to just make a new NBHM. NonBlockingHashMap t = (NonBlockingHashMap) super.clone(); // But I don't have an atomic clone operation - the underlying _kvs // structure is undergoing rapid change. If I just clone the _kvs // field, the CHM in _kvs[0] won't be in sync. // // Wipe out the cloned array (it was shallow anyways). t.clear(); // Now copy sanely for( TypeK K : keySet() ) { final TypeV V = get(K); // Do an official 'get' t.put(K,V); } return t; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } /** * Returns a string representation of this map. The string representation * consists of a list of key-value mappings in the order returned by the * map's entrySet view's iterator, enclosed in braces * ("{}"). Adjacent mappings are separated by the characters * ", " (comma and space). Each key-value mapping is rendered as * the key followed by an equals sign ("=") followed by the * associated value. Keys and values are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this map */ @Override public String toString() { Iterator> i = entrySet().iterator(); if( !i.hasNext()) return "{}"; StringBuilder sb = new StringBuilder(); sb.append('{'); for (;;) { Entry e = i.next(); TypeK key = e.getKey(); TypeV value = e.getValue(); sb.append(key == this ? "(this Map)" : key); sb.append('='); sb.append(value == this ? "(this Map)" : value); if( !i.hasNext()) return sb.append('}').toString(); sb.append(", "); } } // --- keyeq --------------------------------------------------------------- // Check for key equality. Try direct pointer compare first, then see if // the hashes are unequal (fast negative test) and finally do the full-on // 'equals' v-call. private static boolean keyeq( Object K, Object key, int[] hashes, int hash, int fullhash ) { return K==key || // Either keys match exactly OR // hash exists and matches? hash can be zero during the install of a // new key/value pair. ((hashes[hash] == 0 || hashes[hash] == fullhash) && // Do not call the users' "equals()" call with a Tombstone, as this can // surprise poorly written "equals()" calls that throw exceptions // instead of simply returning false. K != TOMBSTONE && // Do not call users' equals call with a Tombstone // Do the match the hard way - with the users' key being the loop- // invariant "this" pointer. I could have flipped the order of // operands (since equals is commutative), but I'm making mega-morphic // v-calls in a re-probing loop and nailing down the 'this' argument // gives both the JIT and the hardware a chance to prefetch the call target. key.equals(K)); // Finally do the hard match } // --- get ----------------------------------------------------------------- /** Returns the value to which the specified key is mapped, or {@code null} * if this map contains no mapping for the key. *

More formally, if this map contains a mapping from a key {@code k} to * a value {@code v} such that {@code key.equals(k)}, then this method * returns {@code v}; otherwise it returns {@code null}. (There can be at * most one such mapping.) * @throws NullPointerException if the specified key is null */ // Never returns a Prime nor a Tombstone. @Override public TypeV get( Object key ) { final Object V = get_impl(this,_kvs,key); assert !(V instanceof Prime); // Never return a Prime assert V != TOMBSTONE; return (TypeV)V; } private static final Object get_impl( final NonBlockingHashMap topmap, final Object[] kvs, final Object key ) { final int fullhash= hash (key); // throws NullPointerException if key is null final int len = len (kvs); // Count of key/value pairs, reads kvs.length final CHM chm = chm (kvs); // The CHM, for a volatile read below; reads slot 0 of kvs final int[] hashes=hashes(kvs); // The memoized hashes; reads slot 1 of kvs int idx = fullhash & (len-1); // First key hash // Main spin/reprobe loop, looking for a Key hit int reprobe_cnt=0; while( true ) { // Probe table. Each read of 'val' probably misses in cache in a big // table; hopefully the read of 'key' then hits in cache. final Object K = key(kvs,idx); // Get key before volatile read, could be null final Object V = val(kvs,idx); // Get value before volatile read, could be null or Tombstone or Prime if( K == null ) return null; // A clear miss // We need a volatile-read here to preserve happens-before semantics on // newly inserted Keys. If the Key body was written just before inserting // into the table a Key-compare here might read the uninitialized Key body. // Annoyingly this means we have to volatile-read before EACH key compare. // . // We also need a volatile-read between reading a newly inserted Value // and returning the Value (so the user might end up reading the stale // Value contents). Same problem as with keys - and the one volatile // read covers both. final Object[] newkvs = chm._newkvs; // VOLATILE READ before key compare // Key-compare if( keyeq(K,key,hashes,idx,fullhash) ) { // Key hit! Check for no table-copy-in-progress if( !(V instanceof Prime) ) // No copy? return (V == TOMBSTONE) ? null : V; // Return the value // Key hit - but slot is (possibly partially) copied to the new table. // Finish the copy & retry in the new table. return get_impl(topmap,chm.copy_slot_and_check(topmap,kvs,idx,key),key); // Retry in the new table } // get and put must have the same key lookup logic! But only 'put' // needs to force a table-resize for a too-long key-reprobe sequence. // Check for too-many-reprobes on get - and flip to the new table. if( ++reprobe_cnt >= reprobe_limit(len) || // too many probes K == TOMBSTONE ) // found a TOMBSTONE key, means no more keys in this table return newkvs == null ? null : get_impl(topmap,topmap.help_copy(newkvs),key); // Retry in the new table idx = (idx+1)&(len-1); // Reprobe by 1! (could now prefetch) } } // --- getk ----------------------------------------------------------------- /** Returns the Key to which the specified key is mapped, or {@code null} * if this map contains no mapping for the key. * @throws NullPointerException if the specified key is null */ // Never returns a Prime nor a Tombstone. public TypeK getk( TypeK key ) { return (TypeK)getk_impl(this,_kvs,key); } private static final Object getk_impl( final NonBlockingHashMap topmap, final Object[] kvs, final Object key ) { final int fullhash= hash (key); // throws NullPointerException if key is null final int len = len (kvs); // Count of key/value pairs, reads kvs.length final CHM chm = chm (kvs); // The CHM, for a volatile read below; reads slot 0 of kvs final int[] hashes=hashes(kvs); // The memoized hashes; reads slot 1 of kvs int idx = fullhash & (len-1); // First key hash // Main spin/reprobe loop, looking for a Key hit int reprobe_cnt=0; while( true ) { // Probe table. final Object K = key(kvs,idx); // Get key before volatile read, could be null if( K == null ) return null; // A clear miss // We need a volatile-read here to preserve happens-before semantics on // newly inserted Keys. If the Key body was written just before inserting // into the table a Key-compare here might read the uninitialized Key body. // Annoyingly this means we have to volatile-read before EACH key compare. // . // We also need a volatile-read between reading a newly inserted Value // and returning the Value (so the user might end up reading the stale // Value contents). Same problem as with keys - and the one volatile // read covers both. final Object[] newkvs = chm._newkvs; // VOLATILE READ before key compare // Key-compare if( keyeq(K,key,hashes,idx,fullhash) ) return K; // Return existing Key! // get and put must have the same key lookup logic! But only 'put' // needs to force a table-resize for a too-long key-reprobe sequence. // Check for too-many-reprobes on get - and flip to the new table. if( ++reprobe_cnt >= reprobe_limit(len) || // too many probes K == TOMBSTONE ) { // found a TOMBSTONE key, means no more keys in this table return newkvs == null ? null : getk_impl(topmap,topmap.help_copy(newkvs),key); // Retry in the new table } idx = (idx+1)&(len-1); // Reprobe by 1! (could now prefetch) } } static volatile int DUMMY_VOLATILE; /** * Put, Remove, PutIfAbsent, etc. Return the old value. If the returned value is equal to expVal (or expVal is * {@link #NO_MATCH_OLD}) then the put can be assumed to work (although might have been immediately overwritten). * Only the path through copy_slot passes in an expected value of null, and putIfMatch only returns a null if passed * in an expected null. * * @param topmap the map to act on * @param kvs the KV table snapshot we act on * @param key not null (will result in {@link NullPointerException}) * @param putval the new value to use. Not null. {@link #TOMBSTONE} will result in deleting the entry. * @param expVal expected old value. Can be null. {@link #NO_MATCH_OLD} for an unconditional put/remove. * {@link #TOMBSTONE} if we expect old entry to not exist(null/{@link #TOMBSTONE} value). * {@link #MATCH_ANY} will ignore the current value, but only if an entry exists. A null expVal is used * internally to perform a strict insert-if-never-been-seen-before operation. * @return {@link #TOMBSTONE} if key does not exist or match has failed. null if expVal is * null AND old value was null. Otherwise the old entry value (not null). */ private static final Object putIfMatch0( final NonBlockingHashMap topmap, final Object[] kvs, final Object key, final Object putval, final Object expVal) { assert putval != null; assert !(putval instanceof Prime); assert !(expVal instanceof Prime); final int fullhash = hash (key); // throws NullPointerException if key null final int len = len (kvs); // Count of key/value pairs, reads kvs.length final CHM chm = chm (kvs); // Reads kvs[0] final int[] hashes = hashes(kvs); // Reads kvs[1], read before kvs[0] int idx = fullhash & (len-1); // --- // Key-Claim stanza: spin till we can claim a Key (or force a resizing). int reprobe_cnt=0; Object K=null, V=null; Object[] newkvs=null; while( true ) { // Spin till we get a Key slot V = val(kvs,idx); // Get old value (before volatile read below!) K = key(kvs,idx); // Get current key if( K == null ) { // Slot is free? // Found an empty Key slot - which means this Key has never been in // this table. No need to put a Tombstone - the Key is not here! if( putval == TOMBSTONE ) return TOMBSTONE; // Not-now & never-been in this table if( expVal == MATCH_ANY ) return TOMBSTONE; // Will not match, even after K inserts // Claim the null key-slot if( CAS_key(kvs,idx, null, key ) ) { // Claim slot for Key chm._slots.add(1); // Raise key-slots-used count hashes[idx] = fullhash; // Memoize fullhash break; // Got it! } // CAS to claim the key-slot failed. // // This re-read of the Key points out an annoying short-coming of Java // CAS. Most hardware CAS's report back the existing value - so that // if you fail you have a *witness* - the value which caused the CAS to // fail. The Java API turns this into a boolean destroying the // witness. Re-reading does not recover the witness because another // thread can write over the memory after the CAS. Hence we can be in // the unfortunate situation of having a CAS fail *for cause* but // having that cause removed by a later store. This turns a // non-spurious-failure CAS (such as Azul has) into one that can // apparently spuriously fail - and we avoid apparent spurious failure // by not allowing Keys to ever change. // Volatile read, to force loads of K to retry despite JIT, otherwise // it is legal to e.g. haul the load of "K = key(kvs,idx);" outside of // this loop (since failed CAS ops have no memory ordering semantics). int dummy = DUMMY_VOLATILE; continue; } // Key slot was not null, there exists a Key here // We need a volatile-read here to preserve happens-before semantics on // newly inserted Keys. If the Key body was written just before inserting // into the table a Key-compare here might read the uninitialized Key body. // Annoyingly this means we have to volatile-read before EACH key compare. newkvs = chm._newkvs; // VOLATILE READ before key compare if( keyeq(K,key,hashes,idx,fullhash) ) break; // Got it! // get and put must have the same key lookup logic! Lest 'get' give // up looking too soon. //topmap._reprobes.add(1); if( ++reprobe_cnt >= reprobe_limit(len) || // too many probes or K == TOMBSTONE ) { // found a TOMBSTONE key, means no more keys // We simply must have a new table to do a 'put'. At this point a // 'get' will also go to the new table (if any). We do not need // to claim a key slot (indeed, we cannot find a free one to claim!). newkvs = chm.resize(topmap,kvs); if( expVal != null ) topmap.help_copy(newkvs); // help along an existing copy return putIfMatch0(topmap, newkvs, key, putval, expVal); } idx = (idx+1)&(len-1); // Reprobe! } // End of spinning till we get a Key slot while ( true ) { // Spin till we insert a value // --- // Found the proper Key slot, now update the matching Value slot. We // never put a null, so Value slots monotonically move from null to // not-null (deleted Values use Tombstone). Thus if 'V' is null we // fail this fast cutout and fall into the check for table-full. if( putval == V ) return V; // Fast cutout for no-change // See if we want to move to a new table (to avoid high average re-probe // counts). We only check on the initial set of a Value from null to // not-null (i.e., once per key-insert). Of course we got a 'free' check // of newkvs once per key-compare (not really free, but paid-for by the // time we get here). if( newkvs == null && // New table-copy already spotted? // Once per fresh key-insert check the hard way ((V == null && chm.tableFull(reprobe_cnt,len)) || // Or we found a Prime, but the JMM allowed reordering such that we // did not spot the new table (very rare race here: the writing // thread did a CAS of _newkvs then a store of a Prime. This thread // reads the Prime, then reads _newkvs - but the read of Prime was so // delayed (or the read of _newkvs was so accelerated) that they // swapped and we still read a null _newkvs. The resize call below // will do a CAS on _newkvs forcing the read. V instanceof Prime) ) newkvs = chm.resize(topmap,kvs); // Force the new table copy to start // See if we are moving to a new table. // If so, copy our slot and retry in the new table. if( newkvs != null ) return putIfMatch0(topmap, chm.copy_slot_and_check(topmap, kvs, idx, expVal), key, putval, expVal); // --- // We are finally prepared to update the existing table assert !(V instanceof Prime); // Must match old, and we do not? Then bail out now. Note that either V // or expVal might be TOMBSTONE. Also V can be null, if we've never // inserted a value before. expVal can be null if we are called from // copy_slot. if( expVal != NO_MATCH_OLD && // Do we care about expected-Value at all? V != expVal && // No instant match already? (expVal != MATCH_ANY || V == TOMBSTONE || V == null) && !(V==null && expVal == TOMBSTONE) && // Match on null/TOMBSTONE combo (expVal == null || !expVal.equals(V)) ) // Expensive equals check at the last return (V==null) ? TOMBSTONE : V; // Do not update! // Actually change the Value in the Key,Value pair if( CAS_val(kvs, idx, V, putval ) ) break; // CAS failed // Because we have no witness, we do not know why it failed. // Indeed, by the time we look again the value under test might have flipped // a thousand times and now be the expected value (despite the CAS failing). // Check for the never-succeed condition of a Prime value and jump to any // nested table, or else just re-run. // We would not need this load at all if CAS returned the value on which // the CAS failed (AKA witness). The new CAS semantics are supported via // VarHandle in JDK9. V = val(kvs,idx); // Get new value // If a Prime'd value got installed, we need to re-run the put on the // new table. Otherwise we lost the CAS to another racing put. if( V instanceof Prime ) return putIfMatch0(topmap, chm.copy_slot_and_check(topmap, kvs, idx, expVal), key, putval, expVal); // Simply retry from the start. // NOTE: need the fence, since otherwise 'val(kvs,idx)' load could be hoisted // out of loop. int dummy = DUMMY_VOLATILE; } // CAS succeeded - we did the update! // Both normal put's and table-copy calls putIfMatch, but table-copy // does not (effectively) increase the number of live k/v pairs. if( expVal != null ) { // Adjust sizes - a striped counter if( (V == null || V == TOMBSTONE) && putval != TOMBSTONE ) chm._size.add( 1); if( !(V == null || V == TOMBSTONE) && putval == TOMBSTONE ) chm._size.add(-1); } // We won; we know the update happened as expected. return (V==null && expVal!=null) ? TOMBSTONE : V; } // --- help_copy --------------------------------------------------------- // Help along an existing resize operation. This is just a fast cut-out // wrapper, to encourage inlining for the fast no-copy-in-progress case. We // always help the top-most table copy, even if there are nested table // copies in progress. private final Object[] help_copy( Object[] helper ) { // Read the top-level KVS only once. We'll try to help this copy along, // even if it gets promoted out from under us (i.e., the copy completes // and another KVS becomes the top-level copy). Object[] topkvs = _kvs; CHM topchm = chm(topkvs); if( topchm._newkvs == null ) return helper; // No copy in-progress topchm.help_copy_impl(this,topkvs,false); return helper; } // --- CHM ----------------------------------------------------------------- // The control structure for the NonBlockingHashMap private static final class CHM { // Size in active K,V pairs private final ConcurrentAutoTable _size; public int size () { return (int)_size.get(); } // --- // These next 2 fields are used in the resizing heuristics, to judge when // it is time to resize or copy the table. Slots is a count of used-up // key slots, and when it nears a large fraction of the table we probably // end up reprobing too much. Last-resize-milli is the time since the // last resize; if we are running back-to-back resizes without growing // (because there are only a few live keys but many slots full of dead // keys) then we need a larger table to cut down on the churn. // Count of used slots, to tell when table is full of dead unusable slots private final ConcurrentAutoTable _slots; public int slots() { return (int)_slots.get(); } // --- // New mappings, used during resizing. // The 'new KVs' array - created during a resize operation. This // represents the new table being copied from the old one. It's the // volatile variable that is read as we cross from one table to the next, // to get the required memory orderings. It monotonically transits from // null to set (once). volatile Object[] _newkvs; private static final AtomicReferenceFieldUpdater _newkvsUpdater = AtomicReferenceFieldUpdater.newUpdater(CHM.class,Object[].class, "_newkvs"); // Set the _next field if we can. boolean CAS_newkvs( Object[] newkvs ) { while( _newkvs == null ) if( _newkvsUpdater.compareAndSet(this,null,newkvs) ) return true; return false; } // Sometimes many threads race to create a new very large table. Only 1 // wins the race, but the losers all allocate a junk large table with // hefty allocation costs. Attempt to control the overkill here by // throttling attempts to create a new table. I cannot really block here // (lest I lose the non-blocking property) but late-arriving threads can // give the initial resizing thread a little time to allocate the initial // new table. The Right Long Term Fix here is to use array-lets and // incrementally create the new very large array. In C I'd make the array // with malloc (which would mmap under the hood) which would only eat // virtual-address and not real memory - and after Somebody wins then we // could in parallel initialize the array. Java does not allow // un-initialized array creation (especially of ref arrays!). volatile long _resizers; // count of threads attempting an initial resize private static final AtomicLongFieldUpdater _resizerUpdater = AtomicLongFieldUpdater.newUpdater(CHM.class, "_resizers"); // --- // Simple constructor CHM( ConcurrentAutoTable size ) { _size = size; _slots= new ConcurrentAutoTable(); } // --- tableFull --------------------------------------------------------- // Heuristic to decide if this table is too full, and we should start a // new table. Note that if a 'get' call has reprobed too many times and // decided the table must be full, then always the estimate_sum must be // high and we must report the table is full. If we do not, then we might // end up deciding that the table is not full and inserting into the // current table, while a 'get' has decided the same key cannot be in this // table because of too many reprobes. The invariant is: // slots.estimate_sum >= max_reprobe_cnt >= reprobe_limit(len) private final boolean tableFull( int reprobe_cnt, int len ) { return // Do the cheap check first: we allow some number of reprobes always reprobe_cnt >= REPROBE_LIMIT && (reprobe_cnt >= reprobe_limit(len) || // More expensive check: see if the table is > 1/2 full. _slots.estimate_get() >= (len>>1)); } // --- resize ------------------------------------------------------------ // Resizing after too many probes. "How Big???" heuristics are here. // Callers will (not this routine) will 'help_copy' any in-progress copy. // Since this routine has a fast cutout for copy-already-started, callers // MUST 'help_copy' lest we have a path which forever runs through // 'resize' only to discover a copy-in-progress which never progresses. private final Object[] resize( NonBlockingHashMap topmap, Object[] kvs) { assert chm(kvs) == this; // Check for resize already in progress, probably triggered by another thread Object[] newkvs = _newkvs; // VOLATILE READ if( newkvs != null ) // See if resize is already in progress return newkvs; // Use the new table already // No copy in-progress, so start one. First up: compute new table size. int oldlen = len(kvs); // Old count of K,V pairs allowed int sz = size(); // Get current table count of active K,V pairs int newsz = sz; // First size estimate // Heuristic to determine new size. We expect plenty of dead-slots-with-keys // and we need some decent padding to avoid endless reprobing. if( sz >= (oldlen>>2) ) { // If we are >25% full of keys then... newsz = oldlen<<1; // Double size, so new table will be between 12.5% and 25% full // For tables less than 1M entries, if >50% full of keys then... // For tables more than 1M entries, if >75% full of keys then... if( 4L*sz >= ((oldlen>>20)!=0?3L:2L)*oldlen ) newsz = oldlen<<2; // Double double size, so new table will be between %12.5 (18.75%) and 25% (25%) } // This heuristic in the next 2 lines leads to a much denser table // with a higher reprobe rate //if( sz >= (oldlen>>1) ) // If we are >50% full of keys then... // newsz = oldlen<<1; // Double size // Last (re)size operation was very recent? Then double again // despite having few live keys; slows down resize operations // for tables subject to a high key churn rate - but do not // forever grow the table. If there is a high key churn rate // the table needs a steady state of rare same-size resize // operations to clean out the dead keys. long tm = System.currentTimeMillis(); if( newsz <= oldlen && // New table would shrink or hold steady? tm <= topmap._last_resize_milli+10000) // Recent resize (less than 10 sec ago) newsz = oldlen<<1; // Double the existing size // Do not shrink, ever. If we hit this size once, assume we // will again. if( newsz < oldlen ) newsz = oldlen; // Convert to power-of-2 int log2; for( log2=MIN_SIZE_LOG; (1< ((len >> 2) + (len >> 1))) throw new RuntimeException("Table is full."); } // Now limit the number of threads actually allocating memory to a // handful - lest we have 750 threads all trying to allocate a giant // resized array. long r = _resizers; while( !_resizerUpdater.compareAndSet(this,r,r+1) ) r = _resizers; // Size calculation: 2 words (K+V) per table entry, plus a handful. We // guess at 64-bit pointers; 32-bit pointers screws up the size calc by // 2x but does not screw up the heuristic very much. long megs = ((((1L<>20/*megs*/; if( r >= 2 && megs > 0 ) { // Already 2 guys trying; wait and see newkvs = _newkvs; // Between dorking around, another thread did it if( newkvs != null ) // See if resize is already in progress return newkvs; // Use the new table already // TODO - use a wait with timeout, so we'll wakeup as soon as the new table // is ready, or after the timeout in any case. //synchronized( this ) { wait(8*megs); } // Timeout - we always wakeup // For now, sleep a tad and see if the 2 guys already trying to make // the table actually get around to making it happen. try { Thread.sleep(megs); } catch( Exception e ) { } } // Last check, since the 'new' below is expensive and there is a chance // that another thread slipped in a new thread while we ran the heuristic. newkvs = _newkvs; if( newkvs != null ) // See if resize is already in progress return newkvs; // Use the new table already // Double size for K,V pairs, add 1 for CHM newkvs = new Object[(int)len]; // This can get expensive for big arrays newkvs[0] = new CHM(_size); // CHM in slot 0 newkvs[1] = new int[1< _copyIdxUpdater = AtomicLongFieldUpdater.newUpdater(CHM.class, "_copyIdx"); // Work-done reporting. Used to efficiently signal when we can move to // the new table. From 0 to len(oldkvs) refers to copying from the old // table to the new. volatile long _copyDone= 0; static private final AtomicLongFieldUpdater _copyDoneUpdater = AtomicLongFieldUpdater.newUpdater(CHM.class, "_copyDone"); // --- help_copy_impl ---------------------------------------------------- // Help along an existing resize operation. We hope its the top-level // copy (it was when we started) but this CHM might have been promoted out // of the top position. private final void help_copy_impl( NonBlockingHashMap topmap, Object[] oldkvs, boolean copy_all ) { assert chm(oldkvs) == this; Object[] newkvs = _newkvs; assert newkvs != null; // Already checked by caller int oldlen = len(oldkvs); // Total amount to copy final int MIN_COPY_WORK = Math.min(oldlen,1024); // Limit per-thread work // --- int panic_start = -1; int copyidx=-9999; // Fool javac to think it's initialized while( _copyDone < oldlen ) { // Still needing to copy? // Carve out a chunk of work. The counter wraps around so every // thread eventually tries to copy every slot repeatedly. // We "panic" if we have tried TWICE to copy every slot - and it still // has not happened. i.e., twice some thread somewhere claimed they // would copy 'slot X' (by bumping _copyIdx) but they never claimed to // have finished (by bumping _copyDone). Our choices become limited: // we can wait for the work-claimers to finish (and become a blocking // algorithm) or do the copy work ourselves. Tiny tables with huge // thread counts trying to copy the table often 'panic'. if( panic_start == -1 ) { // No panic? copyidx = (int)_copyIdx; while( !_copyIdxUpdater.compareAndSet(this,copyidx,copyidx+MIN_COPY_WORK) ) copyidx = (int)_copyIdx; // Re-read if( !(copyidx < (oldlen<<1)) ) // Panic! panic_start = copyidx; // Record where we started to panic-copy } // We now know what to copy. Try to copy. int workdone = 0; for( int i=0; i 0 ) // Report work-done occasionally copy_check_and_promote( topmap, oldkvs, workdone );// See if we can promote //for( int i=0; i 0 ) { while( !_copyDoneUpdater.compareAndSet(this,copyDone,copyDone+workdone) ) { copyDone = _copyDone; // Reload, retry assert (copyDone+workdone) <= oldlen; } } // Check for copy being ALL done, and promote. Note that we might have // nested in-progress copies and manage to finish a nested copy before // finishing the top-level copy. We only promote top-level copies. if( copyDone+workdone == oldlen && // Ready to promote this table? topmap._kvs == oldkvs && // Looking at the top-level table? // Attempt to promote topmap.CAS_kvs(oldkvs,_newkvs) ) { topmap._last_resize_milli = System.currentTimeMillis(); // Record resize time for next check } } // --- copy_slot --------------------------------------------------------- // Copy one K/V pair from oldkvs[i] to newkvs. Returns true if we can // confirm that we set an old-table slot to TOMBPRIME, and only returns after // updating the new table. We need an accurate confirmed-copy count so // that we know when we can promote (if we promote the new table too soon, // other threads may 'miss' on values not-yet-copied from the old table). // We don't allow any direct updates on the new table, unless they first // happened to the old table - so that any transition in the new table from // null to not-null must have been from a copy_slot (or other old-table // overwrite) and not from a thread directly writing in the new table. private boolean copy_slot( NonBlockingHashMap topmap, int idx, Object[] oldkvs, Object[] newkvs ) { // Blindly set the key slot from null to TOMBSTONE, to eagerly stop // fresh put's from inserting new values in the old table when the old // table is mid-resize. We don't need to act on the results here, // because our correctness stems from box'ing the Value field. Slamming // the Key field is a minor speed optimization. Object key; while( (key=key(oldkvs,idx)) == null ) CAS_key(oldkvs,idx, null, TOMBSTONE); // --- // Prevent new values from appearing in the old table. // Box what we see in the old table, to prevent further updates. Object oldval = val(oldkvs,idx); // Read OLD table while( !(oldval instanceof Prime) ) { final Prime box = (oldval == null || oldval == TOMBSTONE) ? TOMBPRIME : new Prime(oldval); if( CAS_val(oldkvs,idx,oldval,box) ) { // CAS down a box'd version of oldval // If we made the Value slot hold a TOMBPRIME, then we both // prevented further updates here but also the (absent) // oldval is vacuously available in the new table. We // return with true here: any thread looking for a value for // this key can correctly go straight to the new table and // skip looking in the old table. if( box == TOMBPRIME ) return true; // Otherwise we boxed something, but it still needs to be // copied into the new table. oldval = box; // Record updated oldval break; // Break loop; oldval is now boxed by us } oldval = val(oldkvs,idx); // Else try, try again } if( oldval == TOMBPRIME ) return false; // Copy already complete here! // --- // Copy the value into the new table, but only if we overwrite a null. // If another value is already in the new table, then somebody else // wrote something there and that write is happens-after any value that // appears in the old table. Object old_unboxed = ((Prime)oldval)._V; assert old_unboxed != TOMBSTONE; putIfMatch0(topmap, newkvs, key, old_unboxed, null); // --- // Finally, now that any old value is exposed in the new table, we can // forever hide the old-table value by slapping a TOMBPRIME down. This // will stop other threads from uselessly attempting to copy this slot // (i.e., it's a speed optimization not a correctness issue). while( oldval != TOMBPRIME && !CAS_val(oldkvs,idx,oldval,TOMBPRIME) ) oldval = val(oldkvs,idx); return oldval != TOMBPRIME; // True if we slammed the TOMBPRIME down } // end copy_slot } // End of CHM // --- Snapshot ------------------------------------------------------------ // The main class for iterating over the NBHM. It "snapshots" a clean // view of the K/V array. private class SnapshotV implements Iterator, Enumeration { final Object[] _sskvs; public SnapshotV() { while( true ) { // Verify no table-copy-in-progress Object[] topkvs = _kvs; CHM topchm = chm(topkvs); if( topchm._newkvs == null ) { // No table-copy-in-progress // The "linearization point" for the iteration. Every key in this // table will be visited, but keys added later might be skipped or // even be added to a following table (also not iterated over). _sskvs = topkvs; break; } // Table copy in-progress - so we cannot get a clean iteration. We // must help finish the table copy before we can start iterating. topchm.help_copy_impl(NonBlockingHashMap.this,topkvs,true); } // Warm-up the iterator next(); } int length() { return len(_sskvs); } Object key(int idx) { return NonBlockingHashMap.key(_sskvs,idx); } private int _idx; // Varies from 0-keys.length private Object _nextK, _prevK; // Last 2 keys found private TypeV _nextV, _prevV; // Last 2 values found public boolean hasNext() { return _nextV != null; } public TypeV next() { // 'next' actually knows what the next value will be - it had to // figure that out last go-around lest 'hasNext' report true and // some other thread deleted the last value. Instead, 'next' // spends all its effort finding the key that comes after the // 'next' key. if( _idx != 0 && _nextV == null ) throw new NoSuchElementException(); _prevK = _nextK; // This will become the previous key _prevV = _nextV; // This will become the previous value _nextV = null; // We have no more next-key // Attempt to set <_nextK,_nextV> to the next K,V pair. // _nextV is the trigger: stop searching when it is != null while( _idx elements() { return new SnapshotV(); } // --- values -------------------------------------------------------------- /** Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are reflected * in the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * Iterator.remove, Collection.remove, * removeAll, retainAll, and clear operations. * It does not support the add or addAll operations. * *

The view's iterator is a "weakly consistent" iterator that * will never throw {@link ConcurrentModificationException}, and guarantees * to traverse elements as they existed upon construction of the iterator, * and may (but is not guaranteed to) reflect any modifications subsequent * to construction. */ @Override public Collection values() { return new AbstractCollection() { @Override public void clear ( ) { NonBlockingHashMap.this.clear ( ); } @Override public int size ( ) { return NonBlockingHashMap.this.size ( ); } @Override public boolean contains( Object v ) { return NonBlockingHashMap.this.containsValue(v); } @Override public Iterator iterator() { return new SnapshotV(); } }; } // --- keySet -------------------------------------------------------------- private class SnapshotK implements Iterator, Enumeration { final SnapshotV _ss; public SnapshotK() { _ss = new SnapshotV(); } public void remove() { _ss.remove(); } public TypeK next() { _ss.next(); return (TypeK)_ss._prevK; } public boolean hasNext() { return _ss.hasNext(); } public TypeK nextElement() { return next(); } public boolean hasMoreElements() { return hasNext(); } } /** Returns an enumeration of the keys in this table. * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration keys() { return new SnapshotK(); } /** Returns a {@link Set} view of the keys contained in this map. The set * is backed by the map, so changes to the map are reflected in the set, * and vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * *

The view's iterator is a "weakly consistent" iterator that * will never throw {@link ConcurrentModificationException}, and guarantees * to traverse elements as they existed upon construction of the iterator, * and may (but is not guaranteed to) reflect any modifications subsequent * to construction. */ @Override public Set keySet() { return new AbstractSet () { @Override public void clear ( ) { NonBlockingHashMap.this.clear ( ); } @Override public int size ( ) { return NonBlockingHashMap.this.size ( ); } @Override public boolean contains( Object k ) { return NonBlockingHashMap.this.containsKey(k); } @Override public boolean remove ( Object k ) { return NonBlockingHashMap.this.remove (k) != null; } @Override public Iterator iterator() { return new SnapshotK(); } // This is an efficient implementation of toArray instead of the standard // one. In particular it uses a smart iteration over the NBHM. @Override public T[] toArray(T[] a) { Object[] kvs = raw_array(); // Estimate size of array; be prepared to see more or fewer elements int sz = size(); T[] r = a.length >= sz ? a : (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), sz); // Fast efficient element walk. int j=0; for( int i=0; i= r.length ) { int sz2 = (int)Math.min(Integer.MAX_VALUE-8,((long)j)<<1); if( sz2<=r.length ) throw new OutOfMemoryError("Required array size too large"); r = Arrays.copyOf(r,sz2); } r[j++] = (T)K; } } if( j <= a.length ) { // Fit in the original array? if( a!=r ) System.arraycopy(r,0,a,0,j); if( j { NBHMEntry( final TypeK k, final TypeV v ) { super(k,v); } public TypeV setValue(final TypeV val) { if( val == null ) throw new NullPointerException(); _val = val; return put(_key, val); } } private class SnapshotE implements Iterator> { final SnapshotV _ss; public SnapshotE() { _ss = new SnapshotV(); } public void remove() { _ss.remove(); } public Map.Entry next() { _ss.next(); return new NBHMEntry((TypeK)_ss._prevK,_ss._prevV); } public boolean hasNext() { return _ss.hasNext(); } } /** Returns a {@link Set} view of the mappings contained in this map. The * set is backed by the map, so changes to the map are reflected in the * set, and vice-versa. The set supports element removal, which removes * the corresponding mapping from the map, via the * Iterator.remove, Set.remove, removeAll, * retainAll, and clear operations. It does not support * the add or addAll operations. * *

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * *

Warning: the iterator associated with this Set * requires the creation of {@link java.util.Map.Entry} objects with each * iteration. The {@link NonBlockingHashMap} does not normally create or * using {@link java.util.Map.Entry} objects so they will be created soley * to support this iteration. Iterating using {@link #keySet} or {@link * #values} will be more efficient. */ @Override public Set> entrySet() { return new AbstractSet>() { @Override public void clear ( ) { NonBlockingHashMap.this.clear( ); } @Override public int size ( ) { return NonBlockingHashMap.this.size ( ); } @Override public boolean remove( final Object o ) { if( !(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; return NonBlockingHashMap.this.remove(e.getKey(), e.getValue()); } @Override public boolean contains(final Object o) { if( !(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; TypeV v = get(e.getKey()); return v != null && v.equals(e.getValue()); } @Override public Iterator> iterator() { return new SnapshotE(); } }; } // --- writeObject ------------------------------------------------------- // Write a NBHM to a stream private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); // Nothing to write for( Object K : keySet() ) { final Object V = get(K); // Do an official 'get' s.writeObject(K); // Write the pair s.writeObject(V); } s.writeObject(null); // Sentinel to indicate end-of-data s.writeObject(null); } // --- readObject -------------------------------------------------------- // Read a CHM from a stream private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Read nothing initialize(MIN_SIZE); for(;;) { final TypeK K = (TypeK) s.readObject(); final TypeV V = (TypeV) s.readObject(); if( K == null ) break; put(K,V); // Insert with an offical put } } } // End NonBlockingHashMap class





© 2015 - 2024 Weber Informatics LLC | Privacy Policy