com.datatorrent.lib.multiwindow.AbstractSlidingWindowKeyVal Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.datatorrent.lib.multiwindow;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import javax.validation.constraints.Min;
import com.datatorrent.api.DefaultInputPort;
import com.datatorrent.lib.util.BaseNumberKeyValueOperator;
import com.datatorrent.lib.util.KeyValPair;
/**
*
* Provides a sliding window class that lets users access past N-1 window states where N is a property.
*
* The default behavior is just a pass through, i.e. the
* operator does not do any processing on its own. Users are expected to extend
* this class and add their specific processing. Users have to define their own
* output port(s). The tuples are KeyValue pair. This is an abstract class. The
* concrete class has to provide the interface SlidingWindowObject, which keeps
* information about each window.
* This module is end of window as per users choice
*
* Ports:
* data: expects T (any POJO)
*
* Properties:
* windowSize i.e. N: Number of windows to keep state on
*
* @displayName Abstract Sliding Window Key Value
* @category Stats and Aggregations
* @tags sliding window, numeric, key value, average
* @since 0.3.3
*/
public abstract class AbstractSlidingWindowKeyVal
extends BaseNumberKeyValueOperator
{
/**
* buffer to hold state information of different windows.
*/
protected HashMap> buffer = new HashMap>();
/**
* Index of windows stating at 0.
*/
protected int currentstate = -1;
/**
* Concrete class has to implement how they want the tuple to be processed.
*
* @param tuple
* a keyVal pair of tuple.
*/
public abstract void processDataTuple(KeyValPair tuple);
/**
* Concrete class has to implement what to emit at the end of window.
*
* @param key
* @param obj
*/
public abstract void emitTuple(K key, ArrayList obj);
/**
* Length of sliding windows. Minimum value is 2.
*/
@Min(2)
protected int windowSize = 2;
protected long windowId;
/**
* Getter function for windowSize (number of previous window buffer).
*
* @return windowSize
*/
public int getWindowSize()
{
return windowSize;
}
/**
* @param windowSize
*/
public void setWindowSize(int windowSize)
{
this.windowSize = windowSize;
}
/**
* Input port for getting incoming data.
*/
public final transient DefaultInputPort> data = new DefaultInputPort>()
{
@Override
public void process(KeyValPair tuple)
{
processDataTuple(tuple);
}
};
/**
* Moves buffer by 1 and clear contents of current. If you override
* beginWindow, you must call super.beginWindow(windowId) to ensure proper
* operator behavior.
*
* @param windowId
*/
@Override
public void beginWindow(long windowId)
{
this.windowId = windowId;
currentstate++;
if (currentstate >= windowSize) {
for (Map.Entry> e : buffer.entrySet()) {
ArrayList states = e.getValue();
S first = states.get(0);
for (int i = 1; i < windowSize; i++) {
states.set(i - 1, states.get(i));
}
states.set(windowSize - 1, first);
}
currentstate = windowSize - 1;
}
for (Map.Entry> e : buffer.entrySet()) {
e.getValue().get(currentstate).clear();
}
}
/**
* Emit tuple for each key.
*/
@Override
public void endWindow()
{
for (Map.Entry> e : buffer.entrySet()) {
emitTuple(e.getKey(), e.getValue());
}
}
}