com.datatorrent.lib.statistics.WeightedMeanOperator Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.datatorrent.lib.statistics;
import com.datatorrent.api.Context.OperatorContext;
import com.datatorrent.api.DefaultInputPort;
import com.datatorrent.api.DefaultOutputPort;
import com.datatorrent.api.annotation.OperatorAnnotation;
import com.datatorrent.lib.util.BaseNumberValueOperator;
/**
* An implementation of BaseOperator that computes weighted mean of incoming data.
*
* Input Port(s) :
* data : Data values input port.
* weight : Current input data weight.
*
* Output Port(s) :
* mean : Weighted mean output port.
*
* StateFull : Yes, value are aggregated over application window.
* Partitions : No, no will yeild wrong results.
*
* @displayName Weighted Mean
* @category Stats and Aggregations
* @tags numeric, math, calculation, sum, count, mean operator, average
* @since 0.3.4
*/
@OperatorAnnotation(partitionable = false)
public class WeightedMeanOperator extends BaseNumberValueOperator
{
// aggregate weighted sum
private double weightedSum;
// aggregate weighted count
private double weightedCount;
// current input weight
private double currentWeight;
/**
* Input data port that takes a number.
*/
public final transient DefaultInputPort data = new DefaultInputPort()
{
/**
* Computes sum and count with each tuple
*/
@Override
public void process(V tuple)
{
weightedSum += currentWeight * tuple.doubleValue();
weightedCount += currentWeight;
}
};
/**
* Input weight port that takes a number.
*/
public final transient DefaultInputPort weight = new DefaultInputPort()
{
/**
* Computes sum and count with each tuple
*/
@Override
public void process(V tuple)
{
if (tuple.doubleValue() != 0.0) {
currentWeight = tuple.doubleValue();
}
}
};
/**
* Output port that emits weighted mean.
*/
public final transient DefaultOutputPort mean = new DefaultOutputPort();
@Override
public void setup(OperatorContext arg0)
{
currentWeight = 1.0;
}
@Override
public void endWindow()
{
if (weightedCount != 0.0) {
mean.emit(getAverage());
}
weightedSum = 0.0;
weightedCount = 0.0;
}
/**
* Calculate average based on number type.
*/
@SuppressWarnings("unchecked")
public V getAverage()
{
if (weightedSum == 0) {
return null;
}
V num = getValue(weightedSum);
Number val;
switch (getType()) {
case DOUBLE:
val = num.doubleValue() / weightedCount;
break;
case INTEGER:
val = (int)(num.intValue() / weightedCount);
break;
case FLOAT:
val = new Float(num.floatValue() / weightedCount);
break;
case LONG:
val = (long)(num.longValue() / weightedCount);
break;
case SHORT:
val = (short)(num.shortValue() / weightedCount);
break;
default:
val = num.doubleValue() / weightedCount;
break;
}
return (V)val;
}
}