com.datatorrent.lib.util.UnifierArrayHashMapFrequent Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.datatorrent.lib.util;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import com.datatorrent.api.Context.OperatorContext;
import com.datatorrent.api.DefaultOutputPort;
import com.datatorrent.api.Operator.Unifier;
/**
* This unifier consumes key value pairs in the form of a list of hash maps,
* where the key is an object and the value is an integer.
* The operator emits either the largest or smallest value associated with each key at the end of each application window.
*
* The processing is done with sticky key partitioning, i.e. each one key belongs only to one partition.
*
* @displayName Unifier Array Hash Map Frequent
* @category Algorithmic
* @tags numeric
* @since 0.3.3
*/
public class UnifierArrayHashMapFrequent implements Unifier>>
{
HashMap mergedTuple = new HashMap();
/**
* This is the output port on which the smallest and largest values associated with each key are emitted.
*/
public final transient DefaultOutputPort>> mergedport = new DefaultOutputPort>>();
Integer lval;
boolean least = true;
/**
* combines the tuple into a single final tuple which is emitted in endWindow
* @param tuple incoming tuple from a partition
*/
@Override
public void process(ArrayList> tuples)
{
for (HashMap tuple : tuples) {
if (mergedTuple.isEmpty()) {
mergedTuple.putAll(tuple);
for (Map.Entry e: tuple.entrySet()) {
lval = e.getValue();
break;
}
} else {
for (Map.Entry e: tuple.entrySet()) {
if ((least && (e.getValue() < lval)) || (!least && (e.getValue() > lval))) {
mergedTuple.clear();
mergedTuple.put(e.getKey(), e.getValue());
break;
}
}
}
}
}
/**
* getter function for combiner doing least (true) or most (false) compare
* @return least flag
*/
public boolean getLeast()
{
return least;
}
/**
* setter funtion for combiner doing least (true) or most (false) compare
* @param b
*/
public void setLeast(boolean b)
{
least = b;
}
/**
* a no op
* @param windowId
*/
@Override
public void beginWindow(long windowId)
{
}
/**
* emits mergedTuple on mergedport if it is not empty
*/
@Override
public void endWindow()
{
if (!mergedTuple.isEmpty()) {
ArrayList> list = new ArrayList>();
for (Map.Entry entry : mergedTuple.entrySet()) {
HashMap tuple = new HashMap();
tuple.put(entry.getKey(), entry.getValue());
list.add(tuple);
}
mergedport.emit(list);
mergedTuple = new HashMap();
}
}
/**
* a no-op
* @param context
*/
@Override
public void setup(OperatorContext context)
{
}
/**
* a noop
*/
@Override
public void teardown()
{
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy