All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.beam.sdk.io.jdbc.JdbcIO Maven / Gradle / Ivy

There is a newer version: 2.59.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.beam.sdk.io.jdbc;

import static org.apache.beam.sdk.io.jdbc.SchemaUtil.checkNullabilityForFields;
import static org.apache.beam.sdk.util.Preconditions.checkArgumentNotNull;
import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
import static org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.base.Preconditions.checkArgument;
import static org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.base.Preconditions.checkNotNull;
import static org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.base.Preconditions.checkState;

import com.google.auto.value.AutoValue;
import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;
import java.io.IOException;
import java.io.Serializable;
import java.net.URLClassLoader;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;
import java.util.function.Predicate;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import javax.sql.DataSource;
import org.apache.beam.sdk.coders.CannotProvideCoderException;
import org.apache.beam.sdk.coders.Coder;
import org.apache.beam.sdk.coders.CoderRegistry;
import org.apache.beam.sdk.coders.RowCoder;
import org.apache.beam.sdk.coders.VoidCoder;
import org.apache.beam.sdk.io.jdbc.JdbcIO.WriteFn.WriteFnSpec;
import org.apache.beam.sdk.io.jdbc.JdbcUtil.PartitioningFn;
import org.apache.beam.sdk.io.jdbc.SchemaUtil.FieldWithIndex;
import org.apache.beam.sdk.metrics.Distribution;
import org.apache.beam.sdk.metrics.Metrics;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.options.ValueProvider.StaticValueProvider;
import org.apache.beam.sdk.schemas.NoSuchSchemaException;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.schemas.SchemaRegistry;
import org.apache.beam.sdk.transforms.Create;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.Filter;
import org.apache.beam.sdk.transforms.GroupIntoBatches;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.Reshuffle;
import org.apache.beam.sdk.transforms.SerializableFunction;
import org.apache.beam.sdk.transforms.SerializableFunctions;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.Values;
import org.apache.beam.sdk.transforms.View;
import org.apache.beam.sdk.transforms.Wait;
import org.apache.beam.sdk.transforms.WithKeys;
import org.apache.beam.sdk.transforms.display.DisplayData;
import org.apache.beam.sdk.transforms.display.HasDisplayData;
import org.apache.beam.sdk.transforms.windowing.GlobalWindow;
import org.apache.beam.sdk.util.BackOff;
import org.apache.beam.sdk.util.BackOffUtils;
import org.apache.beam.sdk.util.FluentBackoff;
import org.apache.beam.sdk.util.Sleeper;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PBegin;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.PCollection.IsBounded;
import org.apache.beam.sdk.values.PCollectionView;
import org.apache.beam.sdk.values.PDone;
import org.apache.beam.sdk.values.Row;
import org.apache.beam.sdk.values.TypeDescriptor;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.apache.beam.sdk.values.TypeDescriptors.TypeVariableExtractor;
import org.apache.commons.dbcp2.BasicDataSource;
import org.apache.commons.dbcp2.DataSourceConnectionFactory;
import org.apache.commons.dbcp2.PoolableConnectionFactory;
import org.apache.commons.dbcp2.PoolingDataSource;
import org.apache.commons.pool2.impl.GenericObjectPool;
import org.apache.commons.pool2.impl.GenericObjectPoolConfig;
import org.checkerframework.checker.nullness.qual.NonNull;
import org.checkerframework.checker.nullness.qual.Nullable;
import org.checkerframework.dataflow.qual.Pure;
import org.joda.time.Duration;
import org.joda.time.Instant;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * IO to read and write data on JDBC.
 *
 * 

Reading from JDBC datasource

* *

JdbcIO source returns a bounded collection of {@code T} as a {@code PCollection}. T is the * type returned by the provided {@link RowMapper}. * *

To configure the JDBC source, you have to provide a {@link DataSourceConfiguration} using
* 1. {@link DataSourceConfiguration#create(DataSource)}(which must be {@link Serializable});
* 2. or {@link DataSourceConfiguration#create(String, String)}(driver class name and url). * Optionally, {@link DataSourceConfiguration#withUsername(String)} and {@link * DataSourceConfiguration#withPassword(String)} allows you to define username and password. * *

For example: * *

{@code
 * pipeline.apply(JdbcIO.>read()
 *   .withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
 *          "com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb")
 *        .withUsername("username")
 *        .withPassword("password"))
 *   .withQuery("select id,name from Person")
 *   .withRowMapper(new JdbcIO.RowMapper>() {
 *     public KV mapRow(ResultSet resultSet) throws Exception {
 *       return KV.of(resultSet.getInt(1), resultSet.getString(2));
 *     }
 *   })
 * );
 * }
* *

Note you should check with your database provider for the JDBC Driver and Connection Url that * used to create the DataSourceConfiguration. For example, if you use Cloud SQL with postgres, the * JDBC connection Url has this pattern with SocketFactory: * "jdbc:postgresql://google/mydb?cloudSqlInstance=project:region:myinstance& * socketFactory=com.google.cloud.sql.postgres.SocketFactory". Check * here for more details. * *

Query parameters can be configured using a user-provided {@link StatementPreparator}. For * example: * *

{@code
 * pipeline.apply(JdbcIO.>read()
 *   .withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
 *       "com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb",
 *       "username", "password"))
 *   .withQuery("select id,name from Person where name = ?")
 *   .withStatementPreparator(new JdbcIO.StatementPreparator() {
 *     public void setParameters(PreparedStatement preparedStatement) throws Exception {
 *       preparedStatement.setString(1, "Darwin");
 *     }
 *   })
 *   .withRowMapper(new JdbcIO.RowMapper>() {
 *     public KV mapRow(ResultSet resultSet) throws Exception {
 *       return KV.of(resultSet.getInt(1), resultSet.getString(2));
 *     }
 *   })
 * );
 * }
* *

To customize the building of the {@link DataSource} we can provide a {@link * SerializableFunction}. For example if you need to provide a {@link PoolingDataSource} from an * existing {@link DataSourceConfiguration}: you can use a {@link PoolableDataSourceProvider}: * *

{@code
 * pipeline.apply(JdbcIO.>read()
 *   .withDataSourceProviderFn(JdbcIO.PoolableDataSourceProvider.of(
 *       JdbcIO.DataSourceConfiguration.create(
 *           "com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb",
 *           "username", "password")))
 *    // ...
 * );
 * }
* *

By default, the provided function requests a DataSource per execution thread. In some * circumstances this can quickly overwhelm the database by requesting too many connections. In that * case you should look into sharing a single instance of a {@link PoolingDataSource} across all the * execution threads. For example: * *


 * private static class MyDataSourceProviderFn implements{@literal SerializableFunction} {
 *   private static transient DataSource dataSource;
 *
 *  {@literal @Override}
 *   public synchronized DataSource apply(Void input) {
 *     if (dataSource == null) {
 *       dataSource = ... build data source ...
 *     }
 *     return dataSource;
 *   }
 * }
 * {@literal
 * pipeline.apply(JdbcIO.>read()
 *   .withDataSourceProviderFn(new MyDataSourceProviderFn())
 *   // ...
 * );
 * }
* *

Parallel reading from a JDBC datasource

* *

Beam supports partitioned reading of all data from a table. Automatic partitioning is * supported for a few data types: {@link Long}, {@link org.joda.time.DateTime}. To enable this, use * {@link JdbcIO#readWithPartitions(TypeDescriptor)}. For other types, use {@link * ReadWithPartitions#readWithPartitions(JdbcReadWithPartitionsHelper)} with custom {@link * JdbcReadWithPartitionsHelper}. * *

The partitioning scheme depends on these parameters, which can be user-provided, or * automatically inferred by Beam (for the supported types): * *

    *
  • Upper bound *
  • Lower bound *
  • Number of partitions - when auto-inferred, the number of partitions defaults to the square * root of the number of rows divided by 5 (i.e.: {@code Math.floor(Math.sqrt(numRows) / 5)}). *
* *

To trigger auto-inference of these parameters, the user just needs to not provide them. To * infer them automatically, Beam runs either of these statements: * *

    *
  • {@code SELECT min(column), max(column), COUNT(*) from table} when none of the parameters is * passed to the transform. *
  • {@code SELECT min(column), max(column) from table} when only number of partitions is * provided, but not upper or lower bounds. *
* *

Should I use this transform? Consider using this transform in the following situations: * *

    *
  • The partitioning column is indexed. This will help speed up the range queries *
  • Use auto-inference if the queries for bound and partition inference are efficient to * execute in your DBMS. *
  • The distribution of data over the partitioning column is roughly uniform. Uniformity * is not mandatory, but this transform will work best in that situation. *
* *

The following example shows usage of auto-inferred ranges, number of partitions, and * schema * *

{@code
 * pipeline.apply(JdbcIO.readWithPartitions()
 *  .withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
 *         "com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb")
 *       .withUsername("username")
 *       .withPassword("password"))
 *  .withTable("Person")
 *  .withPartitionColumn("id")
 *  .withRowOutput()
 * );
 * }
* *

Instead of a full table you could also use a subquery in parentheses. The subquery can be * specified using Table option instead and partition columns can be qualified using the subquery * alias provided as part of Table. Note that a subquery may not perform as well with * auto-inferred ranges and partitions, because it may not rely on indices to speed up the * partitioning. * *

{@code
 * pipeline.apply(JdbcIO.>readWithPartitions()
 *  .withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
 *         "com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb")
 *       .withUsername("username")
 *       .withPassword("password"))
 *  .withTable("(select id, name from Person) as subq")
 *  .withPartitionColumn("id")
 *  .withLowerBound(0)
 *  .withUpperBound(1000)
 *  .withNumPartitions(5)
 *  .withRowMapper(new JdbcIO.RowMapper>() {
 *    public KV mapRow(ResultSet resultSet) throws Exception {
 *      return KV.of(resultSet.getInt(1), resultSet.getString(2));
 *    }
 *  })
 * );
 * }
* *

Writing to JDBC datasource

* *

JDBC sink supports writing records into a database. It writes a {@link PCollection} to the * database by converting each T into a {@link PreparedStatement} via a user-provided {@link * PreparedStatementSetter}. * *

Like the source, to configure the sink, you have to provide a {@link DataSourceConfiguration}. * *

{@code
 * pipeline
 *   .apply(...)
 *   .apply(JdbcIO.>write()
 *      .withDataSourceConfiguration(JdbcIO.DataSourceConfiguration.create(
 *            "com.mysql.jdbc.Driver", "jdbc:mysql://hostname:3306/mydb")
 *          .withUsername("username")
 *          .withPassword("password"))
 *      .withStatement("insert into Person values(?, ?)")
 *      .withPreparedStatementSetter(new JdbcIO.PreparedStatementSetter>() {
 *        public void setParameters(KV element, PreparedStatement query)
 *          throws SQLException {
 *          query.setInt(1, element.getKey());
 *          query.setString(2, element.getValue());
 *        }
 *      })
 *    );
 * }
* *

NB: in case of transient failures, Beam runners may execute parts of JdbcIO.Write multiple * times for fault tolerance. Because of that, you should avoid using {@code INSERT} statements, * since that risks duplicating records in the database, or failing due to primary key conflicts. * Consider using MERGE ("upsert") * statements supported by your database instead. */ @SuppressWarnings({ "rawtypes" // TODO(https://github.com/apache/beam/issues/20447) }) public class JdbcIO { private static final Logger LOG = LoggerFactory.getLogger(JdbcIO.class); /** * Read data from a JDBC datasource. * * @param Type of the data to be read. */ public static Read read() { return new AutoValue_JdbcIO_Read.Builder() .setFetchSize(DEFAULT_FETCH_SIZE) .setOutputParallelization(true) .build(); } /** Read Beam {@link Row}s from a JDBC data source. */ public static ReadRows readRows() { return new AutoValue_JdbcIO_ReadRows.Builder() .setFetchSize(DEFAULT_FETCH_SIZE) .setOutputParallelization(true) .setStatementPreparator(ignored -> {}) .build(); } /** * Like {@link #read}, but executes multiple instances of the query substituting each element of a * {@link PCollection} as query parameters. * * @param Type of the data representing query parameters. * @param Type of the data to be read. */ public static ReadAll readAll() { return new AutoValue_JdbcIO_ReadAll.Builder() .setFetchSize(DEFAULT_FETCH_SIZE) .setOutputParallelization(true) .build(); } /** * Like {@link #readAll}, but executes multiple instances of the query on the same table * (subquery) using ranges. * * @param partitioningColumnType Type descriptor for the partition column. * @param Type of the data to be read. */ public static ReadWithPartitions readWithPartitions( TypeDescriptor partitioningColumnType) { return new AutoValue_JdbcIO_ReadWithPartitions.Builder() .setPartitionColumnType(partitioningColumnType) .setNumPartitions(DEFAULT_NUM_PARTITIONS) .setFetchSize(DEFAULT_FETCH_SIZE) .setUseBeamSchema(false) .build(); } /** * Like {@link #readAll}, but executes multiple instances of the query on the same table * (subquery) using ranges. * * @param partitionsHelper Custom helper for defining partitions. * @param Type of the data to be read. */ public static ReadWithPartitions readWithPartitions( JdbcReadWithPartitionsHelper partitionsHelper) { return new AutoValue_JdbcIO_ReadWithPartitions.Builder() .setPartitionsHelper(partitionsHelper) .setNumPartitions(DEFAULT_NUM_PARTITIONS) .setFetchSize(DEFAULT_FETCH_SIZE) .setUseBeamSchema(false) .build(); } public static ReadWithPartitions readWithPartitions() { return JdbcIO.readWithPartitions(TypeDescriptors.longs()); } private static final long DEFAULT_BATCH_SIZE = 1000L; private static final long DEFAULT_MAX_BATCH_BUFFERING_DURATION = 200L; private static final int DEFAULT_FETCH_SIZE = 50_000; // Default values used from fluent backoff. private static final Duration DEFAULT_INITIAL_BACKOFF = Duration.standardSeconds(1); private static final Duration DEFAULT_MAX_CUMULATIVE_BACKOFF = Duration.standardDays(1000); // Default value used for partitioning a table private static final int DEFAULT_NUM_PARTITIONS = 200; /** * Write data to a JDBC datasource. * * @param Type of the data to be written. */ public static Write write() { return new Write<>(); } public static WriteVoid writeVoid() { return new AutoValue_JdbcIO_WriteVoid.Builder() .setBatchSize(DEFAULT_BATCH_SIZE) .setMaxBatchBufferingDuration(DEFAULT_MAX_BATCH_BUFFERING_DURATION) .setRetryStrategy(new DefaultRetryStrategy()) .setRetryConfiguration(RetryConfiguration.create(5, null, Duration.standardSeconds(5))) .build(); } /** * This is the default {@link Predicate} we use to detect DeadLock. It basically test if the * {@link SQLException#getSQLState()} equals 40001 or 40P01. 40001 is the SQL State used by most * of databases to identify deadlock, and 40P01 is specific to PostgreSQL (see PostgreSQL documentation). */ public static class DefaultRetryStrategy implements RetryStrategy { private static final Set errorCodesToRetry = new HashSet(Arrays.asList("40001", "40P01")); @Override public boolean apply(SQLException e) { String sqlState = e.getSQLState(); return sqlState != null && errorCodesToRetry.contains(sqlState); } } private JdbcIO() {} /** * An interface used by {@link JdbcIO.Read} for converting each row of the {@link ResultSet} into * an element of the resulting {@link PCollection}. */ @FunctionalInterface public interface RowMapper extends Serializable { T mapRow(ResultSet resultSet) throws Exception; } /** * A POJO describing a {@link DataSource}, either providing directly a {@link DataSource} or all * properties allowing to create a {@link DataSource}. */ @AutoValue public abstract static class DataSourceConfiguration implements Serializable { @Pure abstract @Nullable ValueProvider getDriverClassName(); @Pure abstract @Nullable ValueProvider getUrl(); @Pure abstract @Nullable ValueProvider<@Nullable String> getUsername(); @Pure abstract @Nullable ValueProvider<@Nullable String> getPassword(); @Pure abstract @Nullable ValueProvider getConnectionProperties(); @Pure abstract @Nullable ValueProvider> getConnectionInitSqls(); @Pure abstract @Nullable ValueProvider getMaxConnections(); @Pure abstract @Nullable ClassLoader getDriverClassLoader(); @Pure abstract @Nullable ValueProvider getDriverJars(); @Pure abstract @Nullable DataSource getDataSource(); abstract Builder builder(); @AutoValue.Builder abstract static class Builder { abstract Builder setDriverClassName(ValueProvider<@Nullable String> driverClassName); abstract Builder setUrl(ValueProvider<@Nullable String> url); abstract Builder setUsername(ValueProvider<@Nullable String> username); abstract Builder setPassword(ValueProvider<@Nullable String> password); abstract Builder setConnectionProperties( ValueProvider<@Nullable String> connectionProperties); abstract Builder setConnectionInitSqls( ValueProvider> connectionInitSqls); abstract Builder setMaxConnections(ValueProvider<@Nullable Integer> maxConnections); abstract Builder setDriverClassLoader(ClassLoader driverClassLoader); abstract Builder setDriverJars(ValueProvider driverJars); abstract Builder setDataSource(@Nullable DataSource dataSource); abstract DataSourceConfiguration build(); } public static DataSourceConfiguration create(DataSource dataSource) { checkArgument(dataSource != null, "dataSource can not be null"); checkArgument(dataSource instanceof Serializable, "dataSource must be Serializable"); return new AutoValue_JdbcIO_DataSourceConfiguration.Builder() .setDataSource(dataSource) .build(); } public static DataSourceConfiguration create(String driverClassName, String url) { checkArgument(driverClassName != null, "driverClassName can not be null"); checkArgument(url != null, "url can not be null"); return create( ValueProvider.StaticValueProvider.of(driverClassName), ValueProvider.StaticValueProvider.of(url)); } public static DataSourceConfiguration create( ValueProvider<@Nullable String> driverClassName, ValueProvider<@Nullable String> url) { checkArgument(driverClassName != null, "driverClassName can not be null"); checkArgument(url != null, "url can not be null"); return new AutoValue_JdbcIO_DataSourceConfiguration.Builder() .setDriverClassName(driverClassName) .setUrl(url) .build(); } public DataSourceConfiguration withUsername(@Nullable String username) { return withUsername(ValueProvider.StaticValueProvider.of(username)); } public DataSourceConfiguration withUsername(ValueProvider<@Nullable String> username) { return builder().setUsername(username).build(); } public DataSourceConfiguration withPassword(@Nullable String password) { return withPassword(ValueProvider.StaticValueProvider.of(password)); } public DataSourceConfiguration withPassword(ValueProvider<@Nullable String> password) { return builder().setPassword(password).build(); } /** * Sets the connection properties passed to driver.connect(...). Format of the string must be * [propertyName=property;]* * *

NOTE - The "user" and "password" properties can be add via {@link #withUsername(String)}, * {@link #withPassword(String)}, so they do not need to be included here. */ public DataSourceConfiguration withConnectionProperties(String connectionProperties) { checkArgument(connectionProperties != null, "connectionProperties can not be null"); return withConnectionProperties(ValueProvider.StaticValueProvider.of(connectionProperties)); } /** Same as {@link #withConnectionProperties(String)} but accepting a ValueProvider. */ public DataSourceConfiguration withConnectionProperties( ValueProvider<@Nullable String> connectionProperties) { checkArgument(connectionProperties != null, "connectionProperties can not be null"); return builder().setConnectionProperties(connectionProperties).build(); } /** * Sets the connection init sql statements to driver.connect(...). * *

NOTE - This property is not applicable across databases. Only MySQL and MariaDB support * this. A Sql exception is thrown if your database does not support it. */ public DataSourceConfiguration withConnectionInitSqls( Collection<@Nullable String> connectionInitSqls) { checkArgument(connectionInitSqls != null, "connectionInitSqls can not be null"); return withConnectionInitSqls(ValueProvider.StaticValueProvider.of(connectionInitSqls)); } /** Same as {@link #withConnectionInitSqls(Collection)} but accepting a ValueProvider. */ public DataSourceConfiguration withConnectionInitSqls( ValueProvider> connectionInitSqls) { checkArgument(connectionInitSqls != null, "connectionInitSqls can not be null"); checkArgument(!connectionInitSqls.get().isEmpty(), "connectionInitSqls can not be empty"); return builder().setConnectionInitSqls(connectionInitSqls).build(); } /** Sets the maximum total number of connections. Use a negative value for no limit. */ public DataSourceConfiguration withMaxConnections(Integer maxConnections) { checkArgument(maxConnections != null, "maxConnections can not be null"); return withMaxConnections(ValueProvider.StaticValueProvider.of(maxConnections)); } /** Same as {@link #withMaxConnections(Integer)} but accepting a ValueProvider. */ public DataSourceConfiguration withMaxConnections( ValueProvider<@Nullable Integer> maxConnections) { return builder().setMaxConnections(maxConnections).build(); } /** * Sets the class loader instance to be used to load the JDBC driver. If not specified, the * default class loader is used. */ public DataSourceConfiguration withDriverClassLoader(ClassLoader driverClassLoader) { checkArgument(driverClassLoader != null, "driverClassLoader can not be null"); return builder().setDriverClassLoader(driverClassLoader).build(); } /** * Comma separated paths for JDBC drivers. This method is filesystem agnostic and can be used * for all FileSystems supported by Beam If not specified, the default classloader is used to * load the jars. * *

For example, gs://your-bucket/driver_jar1.jar,gs://your-bucket/driver_jar2.jar. */ public DataSourceConfiguration withDriverJars(String driverJars) { checkArgument(driverJars != null, "driverJars can not be null"); return withDriverJars(ValueProvider.StaticValueProvider.of(driverJars)); } /** Same as {@link #withDriverJars(String)} but accepting a ValueProvider. */ public DataSourceConfiguration withDriverJars(ValueProvider driverJars) { checkArgument(driverJars != null, "driverJars can not be null"); return builder().setDriverJars(driverJars).build(); } void populateDisplayData(DisplayData.Builder builder) { if (getDataSource() != null) { builder.addIfNotNull(DisplayData.item("dataSource", getDataSource().getClass().getName())); } else { builder.addIfNotNull(DisplayData.item("jdbcDriverClassName", getDriverClassName())); builder.addIfNotNull(DisplayData.item("jdbcUrl", getUrl())); builder.addIfNotNull(DisplayData.item("username", getUsername())); builder.addIfNotNull(DisplayData.item("driverJars", getDriverJars())); } } public DataSource buildDatasource() { if (getDataSource() == null) { BasicDataSource basicDataSource = new BasicDataSource(); if (getDriverClassName() != null) { basicDataSource.setDriverClassName(getDriverClassName().get()); } if (getUrl() != null) { basicDataSource.setUrl(getUrl().get()); } if (getUsername() != null) { @SuppressWarnings( "nullness") // this is actually nullable, but apache commons dbcp2 not annotated @NonNull String username = getUsername().get(); basicDataSource.setUsername(username); } if (getPassword() != null) { @SuppressWarnings( "nullness") // this is actually nullable, but apache commons dbcp2 not annotated @NonNull String password = getPassword().get(); basicDataSource.setPassword(password); } if (getConnectionProperties() != null) { String connectionProperties = getConnectionProperties().get(); if (connectionProperties != null) { basicDataSource.setConnectionProperties(connectionProperties); } } if (getConnectionInitSqls() != null) { Collection connectionInitSqls = getConnectionInitSqls().get(); if (connectionInitSqls != null && !connectionInitSqls.isEmpty()) { basicDataSource.setConnectionInitSqls(connectionInitSqls); } } if (getMaxConnections() != null) { Integer maxConnections = getMaxConnections().get(); if (maxConnections != null) { basicDataSource.setMaxTotal(maxConnections); } } if (getDriverClassLoader() != null) { basicDataSource.setDriverClassLoader(getDriverClassLoader()); } if (getDriverJars() != null) { URLClassLoader classLoader = URLClassLoader.newInstance(JdbcUtil.saveFilesLocally(getDriverJars().get())); basicDataSource.setDriverClassLoader(classLoader); } return basicDataSource; } return getDataSource(); } } /** * An interface used by the JdbcIO Write to set the parameters of the {@link PreparedStatement} * used to setParameters into the database. */ @FunctionalInterface public interface StatementPreparator extends Serializable { void setParameters(PreparedStatement preparedStatement) throws Exception; } /** Implementation of {@link #readRows()}. */ @AutoValue public abstract static class ReadRows extends PTransform> { @Pure abstract @Nullable SerializableFunction getDataSourceProviderFn(); @Pure abstract @Nullable ValueProvider getQuery(); @Pure abstract @Nullable StatementPreparator getStatementPreparator(); @Pure abstract int getFetchSize(); @Pure abstract boolean getOutputParallelization(); abstract Builder toBuilder(); @AutoValue.Builder abstract static class Builder { abstract Builder setDataSourceProviderFn( SerializableFunction dataSourceProviderFn); abstract Builder setQuery(ValueProvider query); abstract Builder setStatementPreparator(StatementPreparator statementPreparator); abstract Builder setFetchSize(int fetchSize); abstract Builder setOutputParallelization(boolean outputParallelization); abstract ReadRows build(); } public ReadRows withDataSourceConfiguration(DataSourceConfiguration config) { return withDataSourceProviderFn(new DataSourceProviderFromDataSourceConfiguration(config)); } public ReadRows withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { return toBuilder().setDataSourceProviderFn(dataSourceProviderFn).build(); } public ReadRows withQuery(String query) { checkArgument(query != null, "query can not be null"); return withQuery(ValueProvider.StaticValueProvider.of(query)); } public ReadRows withQuery(ValueProvider query) { checkArgument(query != null, "query can not be null"); return toBuilder().setQuery(query).build(); } public ReadRows withStatementPreparator(StatementPreparator statementPreparator) { checkArgument(statementPreparator != null, "statementPreparator can not be null"); return toBuilder().setStatementPreparator(statementPreparator).build(); } /** * This method is used to set the size of the data that is going to be fetched and loaded in * memory per every database call. Please refer to: {@link java.sql.Statement#setFetchSize(int)} * It should ONLY be used if the default value throws memory errors. */ public ReadRows withFetchSize(int fetchSize) { // Note that api.java.sql.Statement#setFetchSize says it only accepts values >= 0 // and that MySQL supports using Integer.MIN_VALUE as a hint to stream the ResultSet instead // of loading it into memory. See // https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html for additional details. checkArgument( fetchSize >= 0 || fetchSize == Integer.MIN_VALUE, "fetch size must be >= 0 or equal to Integer.MIN_VALUE"); return toBuilder().setFetchSize(fetchSize).build(); } /** * Whether to reshuffle the resulting PCollection so results are distributed to all workers. The * default is to parallelize and should only be changed if this is known to be unnecessary. */ public ReadRows withOutputParallelization(boolean outputParallelization) { return toBuilder().setOutputParallelization(outputParallelization).build(); } @Override public PCollection expand(PBegin input) { ValueProvider query = checkStateNotNull(getQuery(), "withQuery() is required"); SerializableFunction dataSourceProviderFn = checkStateNotNull( getDataSourceProviderFn(), "withDataSourceConfiguration() or withDataSourceProviderFn() is required"); Schema schema = inferBeamSchema(dataSourceProviderFn.apply(null), query.get()); PCollection rows = input.apply( JdbcIO.read() .withDataSourceProviderFn(dataSourceProviderFn) .withQuery(query) .withCoder(RowCoder.of(schema)) .withRowMapper(SchemaUtil.BeamRowMapper.of(schema)) .withFetchSize(getFetchSize()) .withOutputParallelization(getOutputParallelization()) .withStatementPreparator(checkStateNotNull(getStatementPreparator()))); rows.setRowSchema(schema); return rows; } // Spotbugs seems to not understand the multi-statement try-with-resources @SuppressFBWarnings("OBL_UNSATISFIED_OBLIGATION") public static Schema inferBeamSchema(DataSource ds, String query) { try (Connection conn = ds.getConnection(); PreparedStatement statement = conn.prepareStatement( query, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)) { ResultSetMetaData metadata = checkStateNotNull(statement.getMetaData(), "could not get statement metadata"); return SchemaUtil.toBeamSchema(metadata); } catch (SQLException e) { throw new BeamSchemaInferenceException("Failed to infer Beam schema", e); } } @Override public void populateDisplayData(DisplayData.Builder builder) { super.populateDisplayData(builder); builder.add(DisplayData.item("query", getQuery())); if (getDataSourceProviderFn() instanceof HasDisplayData) { ((HasDisplayData) getDataSourceProviderFn()).populateDisplayData(builder); } } } /** Implementation of {@link #read}. */ @AutoValue public abstract static class Read extends PTransform> { @Pure abstract @Nullable SerializableFunction getDataSourceProviderFn(); @Pure abstract @Nullable ValueProvider getQuery(); @Pure abstract @Nullable StatementPreparator getStatementPreparator(); @Pure abstract @Nullable RowMapper getRowMapper(); @Pure abstract @Nullable Coder getCoder(); @Pure abstract int getFetchSize(); @Pure abstract boolean getOutputParallelization(); @Pure abstract Builder toBuilder(); @AutoValue.Builder abstract static class Builder { abstract Builder setDataSourceProviderFn( SerializableFunction dataSourceProviderFn); abstract Builder setQuery(ValueProvider query); abstract Builder setStatementPreparator(StatementPreparator statementPreparator); abstract Builder setRowMapper(RowMapper rowMapper); abstract Builder setCoder(Coder coder); abstract Builder setFetchSize(int fetchSize); abstract Builder setOutputParallelization(boolean outputParallelization); abstract Read build(); } public Read withDataSourceConfiguration(final DataSourceConfiguration config) { return withDataSourceProviderFn(new DataSourceProviderFromDataSourceConfiguration(config)); } public Read withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { return toBuilder().setDataSourceProviderFn(dataSourceProviderFn).build(); } public Read withQuery(String query) { checkArgument(query != null, "query can not be null"); return withQuery(ValueProvider.StaticValueProvider.of(query)); } public Read withQuery(ValueProvider query) { checkArgument(query != null, "query can not be null"); return toBuilder().setQuery(query).build(); } public Read withStatementPreparator(StatementPreparator statementPreparator) { checkArgumentNotNull(statementPreparator, "statementPreparator can not be null"); return toBuilder().setStatementPreparator(statementPreparator).build(); } public Read withRowMapper(RowMapper rowMapper) { checkArgumentNotNull(rowMapper, "rowMapper can not be null"); return toBuilder().setRowMapper(rowMapper).build(); } /** * @deprecated *

{@link JdbcIO} is able to infer appropriate coders from other parameters. */ @Deprecated public Read withCoder(Coder coder) { checkArgument(coder != null, "coder can not be null"); return toBuilder().setCoder(coder).build(); } /** * This method is used to set the size of the data that is going to be fetched and loaded in * memory per every database call. Please refer to: {@link java.sql.Statement#setFetchSize(int)} * It should ONLY be used if the default value throws memory errors. */ public Read withFetchSize(int fetchSize) { // Note that api.java.sql.Statement#setFetchSize says it only accepts values >= 0 // and that MySQL supports using Integer.MIN_VALUE as a hint to stream the ResultSet instead // of loading it into memory. See // https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html for additional details. checkArgument( fetchSize >= 0 || fetchSize == Integer.MIN_VALUE, "fetch size must be >= 0 or equal to Integer.MIN_VALUE"); return toBuilder().setFetchSize(fetchSize).build(); } /** * Whether to reshuffle the resulting PCollection so results are distributed to all workers. The * default is to parallelize and should only be changed if this is known to be unnecessary. */ public Read withOutputParallelization(boolean outputParallelization) { return toBuilder().setOutputParallelization(outputParallelization).build(); } @Override public PCollection expand(PBegin input) { ValueProvider query = checkArgumentNotNull(getQuery(), "withQuery() is required"); RowMapper rowMapper = checkArgumentNotNull(getRowMapper(), "withRowMapper() is required"); SerializableFunction dataSourceProviderFn = checkArgumentNotNull( getDataSourceProviderFn(), "withDataSourceConfiguration() or withDataSourceProviderFn() is required"); JdbcIO.ReadAll readAll = JdbcIO.readAll() .withDataSourceProviderFn(dataSourceProviderFn) .withQuery(query) .withRowMapper(rowMapper) .withFetchSize(getFetchSize()) .withOutputParallelization(getOutputParallelization()) .withParameterSetter( (element, preparedStatement) -> { if (getStatementPreparator() != null) { getStatementPreparator().setParameters(preparedStatement); } }); @Nullable Coder coder = getCoder(); if (coder != null) { readAll = readAll.toBuilder().setCoder(coder).build(); } return input.apply(Create.of((Void) null)).apply(readAll); } @Override public void populateDisplayData(DisplayData.Builder builder) { super.populateDisplayData(builder); builder.add(DisplayData.item("query", getQuery())); if (getRowMapper() != null) { builder.add(DisplayData.item("rowMapper", getRowMapper().getClass().getName())); } if (getCoder() != null) { builder.add(DisplayData.item("coder", getCoder().getClass().getName())); } if (getDataSourceProviderFn() instanceof HasDisplayData) { ((HasDisplayData) getDataSourceProviderFn()).populateDisplayData(builder); } } } /** Implementation of {@link #readAll}. */ @AutoValue public abstract static class ReadAll extends PTransform, PCollection> { @Pure abstract @Nullable SerializableFunction getDataSourceProviderFn(); @Pure abstract @Nullable ValueProvider getQuery(); @Pure abstract @Nullable PreparedStatementSetter getParameterSetter(); @Pure abstract @Nullable RowMapper getRowMapper(); @Pure abstract @Nullable Coder getCoder(); abstract int getFetchSize(); abstract boolean getOutputParallelization(); abstract Builder toBuilder(); @AutoValue.Builder abstract static class Builder { abstract Builder setDataSourceProviderFn( SerializableFunction dataSourceProviderFn); abstract Builder setQuery(ValueProvider query); abstract Builder setParameterSetter( PreparedStatementSetter parameterSetter); abstract Builder setRowMapper(RowMapper rowMapper); abstract Builder setCoder(Coder coder); abstract Builder setFetchSize(int fetchSize); abstract Builder setOutputParallelization(boolean outputParallelization); abstract ReadAll build(); } public ReadAll withDataSourceConfiguration( DataSourceConfiguration config) { return withDataSourceProviderFn(new DataSourceProviderFromDataSourceConfiguration(config)); } public ReadAll withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { if (getDataSourceProviderFn() != null) { throw new IllegalArgumentException( "A dataSourceConfiguration or dataSourceProviderFn has " + "already been provided, and does not need to be provided again."); } return toBuilder().setDataSourceProviderFn(dataSourceProviderFn).build(); } public ReadAll withQuery(String query) { checkArgument(query != null, "JdbcIO.readAll().withQuery(query) called with null query"); return withQuery(ValueProvider.StaticValueProvider.of(query)); } public ReadAll withQuery(ValueProvider query) { checkArgument(query != null, "JdbcIO.readAll().withQuery(query) called with null query"); return toBuilder().setQuery(query).build(); } public ReadAll withParameterSetter( PreparedStatementSetter parameterSetter) { checkArgumentNotNull( parameterSetter, "JdbcIO.readAll().withParameterSetter(parameterSetter) called " + "with null statementPreparator"); return toBuilder().setParameterSetter(parameterSetter).build(); } public ReadAll withRowMapper(RowMapper rowMapper) { checkArgument( rowMapper != null, "JdbcIO.readAll().withRowMapper(rowMapper) called with null rowMapper"); return toBuilder().setRowMapper(rowMapper).build(); } /** * @deprecated *

{@link JdbcIO} is able to infer appropriate coders from other parameters. */ @Deprecated public ReadAll withCoder(Coder coder) { checkArgument(coder != null, "JdbcIO.readAll().withCoder(coder) called with null coder"); return toBuilder().setCoder(coder).build(); } /** * This method is used to set the size of the data that is going to be fetched and loaded in * memory per every database call. Please refer to: {@link java.sql.Statement#setFetchSize(int)} * It should ONLY be used if the default value throws memory errors. */ public ReadAll withFetchSize(int fetchSize) { // Note that api.java.sql.Statement#setFetchSize says it only accepts values >= 0 // and that MySQL supports using Integer.MIN_VALUE as a hint to stream the ResultSet instead // of loading it into memory. See // https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html for additional details. checkArgument( fetchSize >= 0 || fetchSize == Integer.MIN_VALUE, "fetch size must be >= 0 or equal to Integer.MIN_VALUE"); return toBuilder().setFetchSize(fetchSize).build(); } /** * Whether to reshuffle the resulting PCollection so results are distributed to all workers. The * default is to parallelize and should only be changed if this is known to be unnecessary. */ public ReadAll withOutputParallelization(boolean outputParallelization) { return toBuilder().setOutputParallelization(outputParallelization).build(); } private @Nullable Coder inferCoder( CoderRegistry registry, SchemaRegistry schemaRegistry) { if (getCoder() != null) { return getCoder(); } else { RowMapper rowMapper = getRowMapper(); TypeDescriptor outputType = TypeDescriptors.extractFromTypeParameters( rowMapper, RowMapper.class, new TypeVariableExtractor, OutputT>() {}); try { return schemaRegistry.getSchemaCoder(outputType); } catch (NoSuchSchemaException e) { LOG.warn( "Unable to infer a schema for type {}. Attempting to infer a coder without a schema.", outputType); } try { return registry.getCoder(outputType); } catch (CannotProvideCoderException e) { LOG.warn("Unable to infer a coder for type {}", outputType); return null; } } } @Override public PCollection expand(PCollection input) { Coder coder = inferCoder( input.getPipeline().getCoderRegistry(), input.getPipeline().getSchemaRegistry()); checkStateNotNull( coder, "Unable to infer a coder for JdbcIO.readAll() transform. " + "Provide a coder via withCoder, or ensure that one can be inferred from the" + " provided RowMapper."); PCollection output = input .apply( ParDo.of( new ReadFn<>( checkStateNotNull(getDataSourceProviderFn()), checkStateNotNull(getQuery()), checkStateNotNull(getParameterSetter()), checkStateNotNull(getRowMapper()), getFetchSize()))) .setCoder(coder); if (getOutputParallelization()) { output = output.apply(new Reparallelize<>()); } try { TypeDescriptor typeDesc = coder.getEncodedTypeDescriptor(); SchemaRegistry registry = input.getPipeline().getSchemaRegistry(); Schema schema = registry.getSchema(typeDesc); output.setSchema( schema, typeDesc, registry.getToRowFunction(typeDesc), registry.getFromRowFunction(typeDesc)); } catch (NoSuchSchemaException e) { // ignore } return output; } @Override public void populateDisplayData(DisplayData.Builder builder) { super.populateDisplayData(builder); builder.add(DisplayData.item("query", getQuery())); if (getRowMapper() != null) { builder.add(DisplayData.item("rowMapper", getRowMapper().getClass().getName())); } if (getCoder() != null) { builder.add(DisplayData.item("coder", getCoder().getClass().getName())); } if (getDataSourceProviderFn() instanceof HasDisplayData) { ((HasDisplayData) getDataSourceProviderFn()).populateDisplayData(builder); } } } /** Implementation of {@link #readWithPartitions}. */ @AutoValue public abstract static class ReadWithPartitions extends PTransform> { @Pure abstract @Nullable SerializableFunction getDataSourceProviderFn(); @Pure abstract @Nullable RowMapper getRowMapper(); @Pure abstract @Nullable Coder getCoder(); @Pure abstract @Nullable Integer getNumPartitions(); @Pure abstract @Nullable String getPartitionColumn(); @Pure abstract int getFetchSize(); @Pure abstract boolean getUseBeamSchema(); @Pure abstract @Nullable PartitionColumnT getLowerBound(); @Pure abstract @Nullable PartitionColumnT getUpperBound(); @Pure abstract @Nullable String getTable(); @Pure abstract @Nullable TypeDescriptor getPartitionColumnType(); @Pure abstract @Nullable JdbcReadWithPartitionsHelper getPartitionsHelper(); @Pure abstract Builder toBuilder(); @AutoValue.Builder abstract static class Builder { abstract Builder setDataSourceProviderFn( SerializableFunction dataSourceProviderFn); abstract Builder setRowMapper(RowMapper rowMapper); abstract Builder setCoder(Coder coder); abstract Builder setNumPartitions(int numPartitions); abstract Builder setPartitionColumn(String partitionColumn); abstract Builder setLowerBound(PartitionColumnT lowerBound); abstract Builder setUpperBound(PartitionColumnT upperBound); abstract Builder setUseBeamSchema(boolean useBeamSchema); abstract Builder setFetchSize(int fetchSize); abstract Builder setTable(String tableName); abstract Builder setPartitionColumnType( TypeDescriptor partitionColumnType); abstract Builder setPartitionsHelper( JdbcReadWithPartitionsHelper partitionsHelper); abstract ReadWithPartitions build(); } public ReadWithPartitions withDataSourceConfiguration( final DataSourceConfiguration config) { return withDataSourceProviderFn(new DataSourceProviderFromDataSourceConfiguration(config)); } public ReadWithPartitions withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { return toBuilder().setDataSourceProviderFn(dataSourceProviderFn).build(); } public ReadWithPartitions withRowMapper(RowMapper rowMapper) { checkNotNull(rowMapper, "rowMapper can not be null"); return toBuilder().setRowMapper(rowMapper).build(); } /** * @deprecated *

{@link JdbcIO} is able to infer appropriate coders from other parameters. */ @Deprecated public ReadWithPartitions withCoder(Coder coder) { checkNotNull(coder, "coder can not be null"); return toBuilder().setCoder(coder).build(); } /** * The number of partitions. This, along with withLowerBound and withUpperBound, form partitions * strides for generated WHERE clause expressions used to split the column withPartitionColumn * evenly. When the input is less than 1, the number is set to 1. */ public ReadWithPartitions withNumPartitions(int numPartitions) { checkArgument(numPartitions > 0, "numPartitions can not be less than 1"); return toBuilder().setNumPartitions(numPartitions).build(); } /** The name of a column of numeric type that will be used for partitioning. */ public ReadWithPartitions withPartitionColumn(String partitionColumn) { checkNotNull(partitionColumn, "partitionColumn can not be null"); return toBuilder().setPartitionColumn(partitionColumn).build(); } /** The number of rows to fetch from the database in the same {@link ResultSet} round-trip. */ public ReadWithPartitions withFetchSize(int fetchSize) { checkArgument(fetchSize > 0, "fetchSize can not be less than 1"); return toBuilder().setFetchSize(fetchSize).build(); } /** Data output type is {@link Row}, and schema is auto-inferred from the database. */ public ReadWithPartitions withRowOutput() { return toBuilder().setUseBeamSchema(true).build(); } public ReadWithPartitions withLowerBound(PartitionColumnT lowerBound) { return toBuilder().setLowerBound(lowerBound).build(); } public ReadWithPartitions withUpperBound(PartitionColumnT upperBound) { return toBuilder().setUpperBound(upperBound).build(); } /** Name of the table in the external database. Can be used to pass a user-defined subqery. */ public ReadWithPartitions withTable(String tableName) { checkNotNull(tableName, "table can not be null"); return toBuilder().setTable(tableName).build(); } private static final int EQUAL = 0; @Override public PCollection expand(PBegin input) { SerializableFunction dataSourceProviderFn = checkStateNotNull( getDataSourceProviderFn(), "withDataSourceConfiguration() or withDataSourceProviderFn() is required"); String partitionColumn = checkStateNotNull(getPartitionColumn(), "withPartitionColumn() is required"); String table = checkStateNotNull(getTable(), "withTable() is required"); checkArgument( // We XOR so that only one of these is true / provided. (^ is an xor operator : )) getUseBeamSchema() ^ getRowMapper() != null, "Provide only withRowOutput() or withRowMapper() arguments for " + "JdbcIO.readWithPartitions). These are mutually exclusive."); checkArgument( (getUpperBound() != null) == (getLowerBound() != null), "When providing either lower or upper bound, both " + "parameters are mandatory for JdbcIO.readWithPartitions"); if (getLowerBound() != null && getUpperBound() != null && getLowerBound() instanceof Comparable) { // Not all partition types are comparable. For example, LocalDateTime, which is a valid // partitioning type, is not Comparable, so we can't enforce this for all sorts of // partitioning. checkArgument( ((Comparable) getLowerBound()).compareTo(getUpperBound()) < EQUAL, "The lower bound of partitioning column is larger or equal than the upper bound"); } JdbcReadWithPartitionsHelper partitionsHelper = getPartitionsHelper(); if (partitionsHelper == null) { partitionsHelper = JdbcUtil.getPartitionsHelper( checkStateNotNull( getPartitionColumnType(), "Provide partitionColumnType or partitionsHelper for JdbcIO.readWithPartitions()")); checkNotNull( partitionsHelper, "readWithPartitions only supports the following types: %s", JdbcUtil.PRESET_HELPERS.keySet()); } PCollection>> params; if (getLowerBound() == null && getUpperBound() == null) { String query = String.format( "SELECT min(%s), max(%s) FROM %s", partitionColumn, partitionColumn, table); if (getNumPartitions() == null) { query = String.format( "SELECT min(%s), max(%s), count(*) FROM %s", partitionColumn, partitionColumn, table); } params = input .apply( JdbcIO.>>read() .withQuery(query) .withDataSourceProviderFn(dataSourceProviderFn) .withRowMapper(checkStateNotNull(partitionsHelper)) .withFetchSize(getFetchSize())) .apply( MapElements.via( new SimpleFunction< KV>, KV>>() { @Override public KV> apply( KV> input) { KV> result; if (getNumPartitions() == null) { // In this case, we use the table row count to infer a number of // partitions. // We take the square root of the number of rows, and divide it by 10 // to keep a relatively low number of partitions, given that an RDBMS // cannot usually accept a very large number of connections. long numPartitions = Math.max( 1, Math.round(Math.floor(Math.sqrt(input.getKey()) / 10))); result = KV.of(numPartitions, input.getValue()); } else { result = KV.of(getNumPartitions().longValue(), input.getValue()); } LOG.info( "Inferred min: {} - max: {} - numPartitions: {}", result.getValue().getKey(), result.getValue().getValue(), result.getKey()); return result; } })); } else { params = input.apply( Create.of( KV.of( checkStateNotNull(getNumPartitions()).longValue(), KV.of(getLowerBound(), getUpperBound())))); } RowMapper rowMapper = null; Schema schema = null; if (getUseBeamSchema()) { schema = ReadRows.inferBeamSchema( dataSourceProviderFn.apply(null), String.format("SELECT * FROM %s", getTable())); rowMapper = (RowMapper) SchemaUtil.BeamRowMapper.of(schema); } else { rowMapper = getRowMapper(); } checkStateNotNull(rowMapper); PCollection> ranges = params .apply( "Partitioning", ParDo.of(new PartitioningFn<>(checkStateNotNull(partitionsHelper)))) .apply("Reshuffle partitions", Reshuffle.viaRandomKey()); JdbcIO.ReadAll, T> readAll = JdbcIO., T>readAll() .withDataSourceProviderFn(dataSourceProviderFn) .withQuery( String.format( "select * from %1$s where %2$s >= ? and %2$s < ?", table, partitionColumn)) .withRowMapper(rowMapper) .withFetchSize(getFetchSize()) .withParameterSetter(checkStateNotNull(partitionsHelper)) .withOutputParallelization(false); if (getUseBeamSchema()) { checkStateNotNull(schema); readAll = readAll.withCoder((Coder) RowCoder.of(schema)); } else if (getCoder() != null) { readAll = readAll.withCoder(getCoder()); } return ranges.apply("Read ranges", readAll); } @Override public void populateDisplayData(DisplayData.Builder builder) { super.populateDisplayData(builder); builder.add( DisplayData.item( "rowMapper", getRowMapper() == null ? "auto-infer" : getRowMapper().getClass().getCanonicalName())); if (getCoder() != null) { builder.add(DisplayData.item("coder", getCoder().getClass().getName())); } builder.add(DisplayData.item("partitionColumn", getPartitionColumn())); builder.add(DisplayData.item("table", getTable())); builder.add( DisplayData.item( "numPartitions", getNumPartitions() == null ? "auto-infer" : getNumPartitions().toString())); builder.add( DisplayData.item( "lowerBound", getLowerBound() == null ? "auto-infer" : getLowerBound().toString())); builder.add( DisplayData.item( "upperBound", getUpperBound() == null ? "auto-infer" : getUpperBound().toString())); if (getDataSourceProviderFn() instanceof HasDisplayData) { ((HasDisplayData) getDataSourceProviderFn()).populateDisplayData(builder); } } } /** A {@link DoFn} executing the SQL query to read from the database. */ private static class ReadFn extends DoFn { private final SerializableFunction dataSourceProviderFn; private final ValueProvider query; private final PreparedStatementSetter parameterSetter; private final RowMapper rowMapper; private final int fetchSize; private @Nullable DataSource dataSource; private @Nullable Connection connection; private ReadFn( SerializableFunction dataSourceProviderFn, ValueProvider query, PreparedStatementSetter parameterSetter, RowMapper rowMapper, int fetchSize) { this.dataSourceProviderFn = dataSourceProviderFn; this.query = query; this.parameterSetter = parameterSetter; this.rowMapper = rowMapper; this.fetchSize = fetchSize; } @Setup public void setup() throws Exception { dataSource = dataSourceProviderFn.apply(null); } private Connection getConnection() throws SQLException { if (this.connection == null) { this.connection = checkStateNotNull(this.dataSource).getConnection(); } return this.connection; } @ProcessElement // Spotbugs seems to not understand the nested try-with-resources @SuppressFBWarnings({ "OBL_UNSATISFIED_OBLIGATION", "ODR_OPEN_DATABASE_RESOURCE", // connection closed in finishbundle }) public void processElement(ProcessContext context) throws Exception { // Only acquire the connection if we need to perform a read. Connection connection = getConnection(); // PostgreSQL requires autocommit to be disabled to enable cursor streaming // see https://jdbc.postgresql.org/documentation/head/query.html#query-with-cursor LOG.info("Autocommit has been disabled"); connection.setAutoCommit(false); try (PreparedStatement statement = connection.prepareStatement( query.get(), ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)) { statement.setFetchSize(fetchSize); parameterSetter.setParameters(context.element(), statement); try (ResultSet resultSet = statement.executeQuery()) { while (resultSet.next()) { context.output(rowMapper.mapRow(resultSet)); } } } } @FinishBundle public void finishBundle() throws Exception { cleanUpConnection(); } @Teardown public void tearDown() throws Exception { cleanUpConnection(); } private void cleanUpConnection() throws Exception { if (connection != null) { try { connection.close(); } finally { connection = null; } } } } /** * Builder used to help with retry configuration for {@link JdbcIO}. The retry configuration * accepts maxAttempts and maxDuration for {@link FluentBackoff}. */ @AutoValue public abstract static class RetryConfiguration implements Serializable { abstract int getMaxAttempts(); abstract @Nullable Duration getMaxDuration(); abstract @Nullable Duration getInitialDuration(); abstract RetryConfiguration.Builder builder(); @AutoValue.Builder abstract static class Builder { abstract Builder setMaxAttempts(int maxAttempts); abstract Builder setMaxDuration(Duration maxDuration); abstract Builder setInitialDuration(Duration initialDuration); abstract RetryConfiguration build(); } public static RetryConfiguration create( int maxAttempts, @Nullable Duration maxDuration, @Nullable Duration initialDuration) { if (maxDuration == null || maxDuration.equals(Duration.ZERO)) { maxDuration = DEFAULT_MAX_CUMULATIVE_BACKOFF; } if (initialDuration == null || initialDuration.equals(Duration.ZERO)) { initialDuration = DEFAULT_INITIAL_BACKOFF; } checkArgument(maxAttempts > 0, "maxAttempts must be greater than 0"); return new AutoValue_JdbcIO_RetryConfiguration.Builder() .setMaxAttempts(maxAttempts) .setInitialDuration(initialDuration) .setMaxDuration(maxDuration) .build(); } } /** * An interface used by the JdbcIO Write to set the parameters of the {@link PreparedStatement} * used to setParameters into the database. */ @FunctionalInterface public interface PreparedStatementSetter extends Serializable { void setParameters(T element, PreparedStatement preparedStatement) throws Exception; } /** * An interface used to control if we retry the statements when a {@link SQLException} occurs. If * {@link RetryStrategy#apply(SQLException)} returns true, {@link Write} tries to replay the * statements. */ @FunctionalInterface public interface RetryStrategy extends Serializable { boolean apply(SQLException sqlException); } /** * This class is used as the default return value of {@link JdbcIO#write()}. * *

All methods in this class delegate to the appropriate method of {@link JdbcIO.WriteVoid}. */ public static class Write extends PTransform, PDone> { WriteVoid inner; Write() { this(JdbcIO.writeVoid()); } Write(WriteVoid inner) { this.inner = inner; } /** See {@link WriteVoid#withAutoSharding()}. */ public Write withAutoSharding() { return new Write<>(inner.withAutoSharding()); } /** See {@link WriteVoid#withDataSourceConfiguration(DataSourceConfiguration)}. */ public Write withDataSourceConfiguration(DataSourceConfiguration config) { return new Write<>(inner.withDataSourceConfiguration(config)); } /** See {@link WriteVoid#withDataSourceProviderFn(SerializableFunction)}. */ public Write withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { return new Write<>(inner.withDataSourceProviderFn(dataSourceProviderFn)); } /** See {@link WriteVoid#withStatement(String)}. */ public Write withStatement(String statement) { return new Write<>(inner.withStatement(statement)); } /** See {@link WriteVoid#withPreparedStatementSetter(PreparedStatementSetter)}. */ public Write withPreparedStatementSetter(PreparedStatementSetter setter) { return new Write<>(inner.withPreparedStatementSetter(setter)); } /** See {@link WriteVoid#withBatchSize(long)}. */ public Write withBatchSize(long batchSize) { return new Write<>(inner.withBatchSize(batchSize)); } /** See {@link WriteVoid#withMaxBatchBufferingDuration(long)}. */ public Write withMaxBatchBufferingDuration(long maxBatchBufferingDuration) { return new Write<>(inner.withMaxBatchBufferingDuration(maxBatchBufferingDuration)); } /** See {@link WriteVoid#withRetryStrategy(RetryStrategy)}. */ public Write withRetryStrategy(RetryStrategy retryStrategy) { return new Write<>(inner.withRetryStrategy(retryStrategy)); } /** See {@link WriteVoid#withRetryConfiguration(RetryConfiguration)}. */ public Write withRetryConfiguration(RetryConfiguration retryConfiguration) { return new Write<>(inner.withRetryConfiguration(retryConfiguration)); } /** See {@link WriteVoid#withTable(String)}. */ public Write withTable(String table) { return new Write<>(inner.withTable(table)); } /** * Returns {@link WriteVoid} transform which can be used in {@link Wait#on(PCollection[])} to * wait until all data is written. * *

Example: write a {@link PCollection} to one database and then to another database, making * sure that writing a window of data to the second database starts only after the respective * window has been fully written to the first database. * *

{@code
     * PCollection firstWriteResults = data.apply(JdbcIO.write()
     *     .withDataSourceConfiguration(CONF_DB_1).withResults());
     * data.apply(Wait.on(firstWriteResults))
     *     .apply(JdbcIO.write().withDataSourceConfiguration(CONF_DB_2));
     * }
*/ public WriteVoid withResults() { return inner; } /** * Returns {@link WriteWithResults} transform that could return a specific result. * *

See {@link WriteWithResults} */ public WriteWithResults withWriteResults( RowMapper rowMapper) { return new AutoValue_JdbcIO_WriteWithResults.Builder() .setRowMapper(rowMapper) .setRetryStrategy(inner.getRetryStrategy()) .setRetryConfiguration(inner.getRetryConfiguration()) .setDataSourceProviderFn(inner.getDataSourceProviderFn()) .setPreparedStatementSetter(inner.getPreparedStatementSetter()) .setStatement(inner.getStatement()) .setTable(inner.getTable()) .setAutoSharding(inner.getAutoSharding()) .build(); } @Override public void populateDisplayData(DisplayData.Builder builder) { inner.populateDisplayData(builder); } @Override public PDone expand(PCollection input) { inner.expand(input); return PDone.in(input.getPipeline()); } } /* The maximum number of elements that will be included in a batch. */ static PCollection> batchElements( PCollection input, @Nullable Boolean withAutoSharding, long batchSize, long maxBatchBufferingDuration) { PCollection> iterables; if (input.isBounded() == IsBounded.UNBOUNDED) { PCollection> keyedInput = input.apply(WithKeys.of("")); GroupIntoBatches groupTransform = GroupIntoBatches.ofSize(batchSize) .withMaxBufferingDuration(Duration.millis(maxBatchBufferingDuration)); if (withAutoSharding != null && withAutoSharding) { // unbounded and withAutoSharding enabled, group into batches with shardedKey iterables = keyedInput.apply(groupTransform.withShardedKey()).apply(Values.create()); } else { // unbounded and without auto sharding, group into batches of assigned max size iterables = keyedInput.apply(groupTransform).apply(Values.create()); } } else { iterables = input.apply( ParDo.of( new DoFn>() { @Nullable List outputList; @ProcessElement @SuppressWarnings( "nullness") // https://github.com/typetools/checker-framework/issues/6389 public void process(ProcessContext c) { if (outputList == null) { outputList = new ArrayList<>(); } outputList.add(c.element()); if (outputList.size() > batchSize) { c.output(outputList); outputList = null; } } @FinishBundle public void finish(FinishBundleContext c) { if (outputList != null && outputList.size() > 0) { c.output(outputList, Instant.now(), GlobalWindow.INSTANCE); } outputList = null; } })); } return iterables; } /** Interface implemented by functions that sets prepared statement data. */ @FunctionalInterface interface PreparedStatementSetCaller extends Serializable { void set( Row element, PreparedStatement preparedStatement, int prepareStatementIndex, SchemaUtil.FieldWithIndex schemaFieldWithIndex) throws SQLException; } /** * A {@link PTransform} to write to a JDBC datasource. Executes statements one by one. * *

The INSERT, UPDATE, and DELETE commands sometimes have an optional RETURNING clause that * supports obtaining data from modified rows while they are being manipulated. Output {@link * PCollection} of this transform is a collection of such returning results mapped by {@link * RowMapper}. */ @AutoValue public abstract static class WriteWithResults extends PTransform, PCollection> { abstract @Nullable Boolean getAutoSharding(); abstract @Nullable SerializableFunction getDataSourceProviderFn(); abstract @Nullable ValueProvider getStatement(); abstract @Nullable PreparedStatementSetter getPreparedStatementSetter(); abstract @Nullable RetryStrategy getRetryStrategy(); abstract @Nullable RetryConfiguration getRetryConfiguration(); abstract @Nullable String getTable(); abstract @Nullable RowMapper getRowMapper(); abstract Builder toBuilder(); @AutoValue.Builder abstract static class Builder { abstract Builder setDataSourceProviderFn( @Nullable SerializableFunction dataSourceProviderFn); abstract Builder setAutoSharding(@Nullable Boolean autoSharding); abstract Builder setStatement(@Nullable ValueProvider statement); abstract Builder setPreparedStatementSetter( @Nullable PreparedStatementSetter setter); abstract Builder setRetryStrategy(@Nullable RetryStrategy deadlockPredicate); abstract Builder setRetryConfiguration(@Nullable RetryConfiguration retryConfiguration); abstract Builder setTable(@Nullable String table); abstract Builder setRowMapper(RowMapper rowMapper); abstract WriteWithResults build(); } public WriteWithResults withDataSourceConfiguration(DataSourceConfiguration config) { return withDataSourceProviderFn(new DataSourceProviderFromDataSourceConfiguration(config)); } public WriteWithResults withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { return toBuilder().setDataSourceProviderFn(dataSourceProviderFn).build(); } public WriteWithResults withStatement(String statement) { return withStatement(ValueProvider.StaticValueProvider.of(statement)); } public WriteWithResults withStatement(ValueProvider statement) { return toBuilder().setStatement(statement).build(); } public WriteWithResults withPreparedStatementSetter(PreparedStatementSetter setter) { return toBuilder().setPreparedStatementSetter(setter).build(); } /** If true, enables using a dynamically determined number of shards to write. */ public WriteWithResults withAutoSharding() { return toBuilder().setAutoSharding(true).build(); } /** * When a SQL exception occurs, {@link Write} uses this {@link RetryStrategy} to determine if it * will retry the statements. If {@link RetryStrategy#apply(SQLException)} returns {@code true}, * then {@link Write} retries the statements. */ public WriteWithResults withRetryStrategy(RetryStrategy retryStrategy) { checkArgument(retryStrategy != null, "retryStrategy can not be null"); return toBuilder().setRetryStrategy(retryStrategy).build(); } /** * When a SQL exception occurs, {@link Write} uses this {@link RetryConfiguration} to * exponentially back off and retry the statements based on the {@link RetryConfiguration} * mentioned. * *

Usage of RetryConfiguration - * *

{@code
     * pipeline.apply(JdbcIO.write())
     *    .withReturningResults(...)
     *    .withDataSourceConfiguration(...)
     *    .withRetryStrategy(...)
     *    .withRetryConfiguration(JdbcIO.RetryConfiguration.
     *        create(5, Duration.standardSeconds(5), Duration.standardSeconds(1))
     *
     * }
* * maxDuration and initialDuration are Nullable * *
{@code
     * pipeline.apply(JdbcIO.write())
     *    .withReturningResults(...)
     *    .withDataSourceConfiguration(...)
     *    .withRetryStrategy(...)
     *    .withRetryConfiguration(JdbcIO.RetryConfiguration.
     *        create(5, null, null)
     *
     * }
*/ public WriteWithResults withRetryConfiguration(RetryConfiguration retryConfiguration) { checkArgument(retryConfiguration != null, "retryConfiguration can not be null"); return toBuilder().setRetryConfiguration(retryConfiguration).build(); } public WriteWithResults withTable(String table) { checkArgument(table != null, "table name can not be null"); return toBuilder().setTable(table).build(); } public WriteWithResults withRowMapper(RowMapper rowMapper) { checkArgument(rowMapper != null, "result set getter can not be null"); return toBuilder().setRowMapper(rowMapper).build(); } @Override public PCollection expand(PCollection input) { checkArgument(getStatement() != null, "withStatement() is required"); checkArgument( getPreparedStatementSetter() != null, "withPreparedStatementSetter() is required"); checkArgument( (getDataSourceProviderFn() != null), "withDataSourceConfiguration() or withDataSourceProviderFn() is required"); @Nullable Boolean autoSharding = getAutoSharding(); checkArgument( autoSharding == null || (autoSharding && input.isBounded() != IsBounded.UNBOUNDED), "Autosharding is only supported for streaming pipelines."); PCollection> iterables = JdbcIO.batchElements( input, autoSharding, DEFAULT_BATCH_SIZE, DEFAULT_MAX_BATCH_BUFFERING_DURATION); return iterables.apply( ParDo.of( new WriteFn( WriteFnSpec.builder() .setRetryStrategy(getRetryStrategy()) .setDataSourceProviderFn(getDataSourceProviderFn()) .setPreparedStatementSetter(getPreparedStatementSetter()) .setRowMapper(getRowMapper()) .setStatement(getStatement()) .setRetryConfiguration(getRetryConfiguration()) .setReturnResults(true) .setBatchSize(1L) .setMaxBatchBufferingDuration(DEFAULT_MAX_BATCH_BUFFERING_DURATION) .build()))); } } /** * A {@link PTransform} to write to a JDBC datasource. Executes statements in a batch, and returns * a trivial result. */ @AutoValue public abstract static class WriteVoid extends PTransform, PCollection> { abstract @Nullable Boolean getAutoSharding(); abstract @Nullable SerializableFunction getDataSourceProviderFn(); abstract @Nullable ValueProvider getStatement(); abstract long getBatchSize(); abstract long getMaxBatchBufferingDuration(); abstract @Nullable PreparedStatementSetter getPreparedStatementSetter(); abstract @Nullable RetryStrategy getRetryStrategy(); abstract @Nullable RetryConfiguration getRetryConfiguration(); abstract @Nullable String getTable(); abstract Builder toBuilder(); @AutoValue.Builder abstract static class Builder { abstract Builder setAutoSharding(Boolean autoSharding); abstract Builder setDataSourceProviderFn( SerializableFunction dataSourceProviderFn); abstract Builder setStatement(ValueProvider statement); abstract Builder setBatchSize(long batchSize); abstract Builder setMaxBatchBufferingDuration(long maxBatchBufferingDuration); abstract Builder setPreparedStatementSetter(PreparedStatementSetter setter); abstract Builder setRetryStrategy(RetryStrategy deadlockPredicate); abstract Builder setRetryConfiguration(RetryConfiguration retryConfiguration); abstract Builder setTable(String table); abstract WriteVoid build(); } /** If true, enables using a dynamically determined number of shards to write. */ public WriteVoid withAutoSharding() { return toBuilder().setAutoSharding(true).build(); } public WriteVoid withDataSourceConfiguration(DataSourceConfiguration config) { return withDataSourceProviderFn(new DataSourceProviderFromDataSourceConfiguration(config)); } public WriteVoid withDataSourceProviderFn( SerializableFunction dataSourceProviderFn) { return toBuilder().setDataSourceProviderFn(dataSourceProviderFn).build(); } public WriteVoid withStatement(String statement) { return withStatement(ValueProvider.StaticValueProvider.of(statement)); } public WriteVoid withStatement(ValueProvider statement) { return toBuilder().setStatement(statement).build(); } public WriteVoid withPreparedStatementSetter(PreparedStatementSetter setter) { return toBuilder().setPreparedStatementSetter(setter).build(); } /** * Provide a maximum size in number of SQL statement for the batch. Default is 1000. The * pipeline will either commit a batch when this maximum is reached or its maximum buffering * time has been reached. See {@link #withMaxBatchBufferingDuration(long)} * * @param batchSize maximum batch size in number of statements */ public WriteVoid withBatchSize(long batchSize) { checkArgument(batchSize > 0, "batchSize must be > 0, but was %s", batchSize); return toBuilder().setBatchSize(batchSize).build(); } /** * Provide maximum buffering time to batch elements before committing SQL statement. Default is * 200 The pipeline will either commit a batch when this maximum buffering time has been reached * or the maximum amount of elements has been collected. See {@link #withBatchSize(long)} * * @param maxBatchBufferingDuration maximum time in milliseconds before batch is committed */ public WriteVoid withMaxBatchBufferingDuration(long maxBatchBufferingDuration) { checkArgument( maxBatchBufferingDuration > 0, "maxBatchBufferingDuration must be > 0, but was %s", maxBatchBufferingDuration); return toBuilder().setMaxBatchBufferingDuration(maxBatchBufferingDuration).build(); } /** * When a SQL exception occurs, {@link Write} uses this {@link RetryStrategy} to determine if it * will retry the statements. If {@link RetryStrategy#apply(SQLException)} returns {@code true}, * then {@link Write} retries the statements. */ public WriteVoid withRetryStrategy(RetryStrategy retryStrategy) { checkArgument(retryStrategy != null, "retryStrategy can not be null"); return toBuilder().setRetryStrategy(retryStrategy).build(); } /** * When a SQL exception occurs, {@link Write} uses this {@link RetryConfiguration} to * exponentially back off and retry the statements based on the {@link RetryConfiguration} * mentioned. * *

Usage of RetryConfiguration - * *

{@code
     * pipeline.apply(JdbcIO.write())
     *    .withDataSourceConfiguration(...)
     *    .withRetryStrategy(...)
     *    .withRetryConfiguration(JdbcIO.RetryConfiguration.
     *        create(5, Duration.standardSeconds(5), Duration.standardSeconds(1))
     *
     * }
* * maxDuration and initialDuration are Nullable * *
{@code
     * pipeline.apply(JdbcIO.write())
     *    .withDataSourceConfiguration(...)
     *    .withRetryStrategy(...)
     *    .withRetryConfiguration(JdbcIO.RetryConfiguration.
     *        create(5, null, null)
     *
     * }
*/ public WriteVoid withRetryConfiguration(RetryConfiguration retryConfiguration) { checkArgument(retryConfiguration != null, "retryConfiguration can not be null"); return toBuilder().setRetryConfiguration(retryConfiguration).build(); } public WriteVoid withTable(String table) { checkArgument(table != null, "table name can not be null"); return toBuilder().setTable(table).build(); } @Override public PCollection expand(PCollection input) { WriteVoid spec = this; checkArgument( (spec.getDataSourceProviderFn() != null), "withDataSourceConfiguration() or withDataSourceProviderFn() is required"); // fixme: validate invalid table input if (input.hasSchema() && !spec.hasStatementAndSetter()) { checkArgument(spec.getTable() != null, "table cannot be null if statement is not provided"); List fields = spec.getFilteredFields(input.getSchema()); spec = spec.toBuilder() .setStatement(spec.generateStatement(fields)) .setPreparedStatementSetter( new AutoGeneratedPreparedStatementSetter(fields, input.getToRowFunction())) .build(); } else { checkArgument(spec.getStatement() != null, "withStatement() is required"); checkArgument( spec.getPreparedStatementSetter() != null, "withPreparedStatementSetter() is required"); } PCollection> iterables = JdbcIO.batchElements( input, getAutoSharding(), getBatchSize(), getMaxBatchBufferingDuration()); return iterables .apply( ParDo.of( new WriteFn( WriteFnSpec.builder() .setRetryConfiguration(spec.getRetryConfiguration()) .setRetryStrategy(spec.getRetryStrategy()) .setPreparedStatementSetter(spec.getPreparedStatementSetter()) .setDataSourceProviderFn(spec.getDataSourceProviderFn()) .setTable(spec.getTable()) .setStatement(spec.getStatement()) .setBatchSize(spec.getBatchSize()) .setMaxBatchBufferingDuration(spec.getMaxBatchBufferingDuration()) .setReturnResults(false) .build()))) .setCoder(VoidCoder.of()); } private StaticValueProvider generateStatement(List fields) { return StaticValueProvider.of( JdbcUtil.generateStatement( checkStateNotNull(getTable()), fields.stream().map(FieldWithIndex::getField).collect(Collectors.toList()))); } // Spotbugs seems to not understand the multi-statement try-with-resources @SuppressFBWarnings("OBL_UNSATISFIED_OBLIGATION") private List getFilteredFields(Schema schema) { Schema tableSchema; try (Connection connection = checkStateNotNull(getDataSourceProviderFn()).apply(null).getConnection(); PreparedStatement statement = connection.prepareStatement(String.format("SELECT * FROM %s", getTable()))) { ResultSetMetaData metadata = checkStateNotNull(statement.getMetaData(), "could not get statement metadata"); tableSchema = SchemaUtil.toBeamSchema(metadata); } catch (SQLException e) { throw new RuntimeException("Error while determining columns from table: " + getTable(), e); } checkState( tableSchema.getFieldCount() >= schema.getFieldCount(), String.format( "Input schema has more fields (%s) than actual table (%s).%n\t" + "Input schema fields: %s | Table fields: %s", tableSchema.getFieldCount(), schema.getFieldCount(), schema.getFields().stream() .map(Schema.Field::getName) .collect(Collectors.joining(", ")), tableSchema.getFields().stream() .map(Schema.Field::getName) .collect(Collectors.joining(", ")))); // filter out missing fields from output table List missingFields = tableSchema.getFields().stream() .filter( line -> schema.getFields().stream() .noneMatch(s -> s.getName().equalsIgnoreCase(line.getName()))) .collect(Collectors.toList()); // allow insert only if missing fields are nullable checkState( !checkNullabilityForFields(missingFields), "Non nullable fields are not allowed without a matching schema. " + "Fields %s were in the destination table but not in the input schema.", missingFields); List tableFilteredFields = new ArrayList<>(); for (Schema.Field tableField : tableSchema.getFields()) { for (Schema.Field f : schema.getFields()) { if (SchemaUtil.compareSchemaField(tableField, f)) { tableFilteredFields.add(FieldWithIndex.of(tableField, schema.getFields().indexOf(f))); break; } } } checkState( tableFilteredFields.size() == schema.getFieldCount(), "Provided schema doesn't match with database schema." + " Table has fields: %s" + " while provided schema has fields: %s", tableFilteredFields.stream() .map(f -> f.getIndex().toString() + "-" + f.getField().getName()) .collect(Collectors.joining(",")), schema.getFieldNames().toString()); return tableFilteredFields; } /** * A {@link org.apache.beam.sdk.io.jdbc.JdbcIO.PreparedStatementSetter} implementation that * calls related setters on prepared statement. */ private class AutoGeneratedPreparedStatementSetter implements PreparedStatementSetter { private final List fields; private final SerializableFunction toRowFn; private final List preparedStatementFieldSetterList = new ArrayList<>(); AutoGeneratedPreparedStatementSetter( List fieldsWithIndex, SerializableFunction toRowFn) { this.fields = fieldsWithIndex; this.toRowFn = toRowFn; IntStream.range(0, fields.size()) .forEach( (index) -> { Schema.FieldType fieldType = fields.get(index).getField().getType(); preparedStatementFieldSetterList.add( JdbcUtil.getPreparedStatementSetCaller(fieldType)); }); } @Override public void setParameters(T element, PreparedStatement preparedStatement) throws Exception { Row row = (element instanceof Row) ? (Row) element : toRowFn.apply(element); IntStream.range(0, fields.size()) .forEach( (index) -> { try { preparedStatementFieldSetterList .get(index) .set(row, preparedStatement, index, fields.get(index)); } catch (SQLException | NullPointerException e) { throw new RuntimeException("Error while setting data to preparedStatement", e); } }); } } private boolean hasStatementAndSetter() { return getStatement() != null && getPreparedStatementSetter() != null; } } private static class Reparallelize extends PTransform, PCollection> { @Override public PCollection expand(PCollection input) { // See https://issues.apache.org/jira/browse/BEAM-2803 // We use a combined approach to "break fusion" here: // (see https://cloud.google.com/dataflow/service/dataflow-service-desc#preventing-fusion) // 1) force the data to be materialized by passing it as a side input to an identity fn, // then 2) reshuffle it with a random key. Initial materialization provides some parallelism // and ensures that data to be shuffled can be generated in parallel, while reshuffling // provides perfect parallelism. // In most cases where a "fusion break" is needed, a simple reshuffle would be sufficient. // The current approach is necessary only to support the particular case of JdbcIO where // a single query may produce many gigabytes of query results. PCollectionView> empty = input .apply("Consume", Filter.by(SerializableFunctions.constant(false))) .apply(View.asIterable()); PCollection materialized = input.apply( "Identity", ParDo.of( new DoFn() { @ProcessElement public void process(ProcessContext c) { c.output(c.element()); } }) .withSideInputs(empty)); return materialized.apply(Reshuffle.viaRandomKey()); } } /** * Wraps a {@link DataSourceConfiguration} to provide a {@link PoolingDataSource}. * *

At most a single {@link DataSource} instance will be constructed during pipeline execution * for each unique {@link DataSourceConfiguration} within the pipeline. */ public static class PoolableDataSourceProvider implements SerializableFunction, HasDisplayData { private static final ConcurrentHashMap instances = new ConcurrentHashMap<>(); private final DataSourceProviderFromDataSourceConfiguration config; private PoolableDataSourceProvider(DataSourceConfiguration config) { this.config = new DataSourceProviderFromDataSourceConfiguration(config); } public static SerializableFunction of(DataSourceConfiguration config) { return new PoolableDataSourceProvider(config); } @Override public DataSource apply(Void input) { return instances.computeIfAbsent( config.config, ignored -> { DataSource basicSource = config.apply(input); DataSourceConnectionFactory connectionFactory = new DataSourceConnectionFactory(basicSource); @SuppressWarnings("nullness") // apache.commons.dbcp2 not annotated PoolableConnectionFactory poolableConnectionFactory = new PoolableConnectionFactory(connectionFactory, null); GenericObjectPoolConfig poolConfig = new GenericObjectPoolConfig(); poolConfig.setMinIdle(0); poolConfig.setMinEvictableIdleTimeMillis(10000); poolConfig.setSoftMinEvictableIdleTimeMillis(30000); GenericObjectPool connectionPool = new GenericObjectPool(poolableConnectionFactory, poolConfig); poolableConnectionFactory.setPool(connectionPool); poolableConnectionFactory.setDefaultAutoCommit(false); poolableConnectionFactory.setDefaultReadOnly(false); return new PoolingDataSource(connectionPool); }); } @Override public void populateDisplayData(DisplayData.Builder builder) { config.populateDisplayData(builder); } } /** * Wraps a {@link DataSourceConfiguration} to provide a {@link DataSource}. * *

At most a single {@link DataSource} instance will be constructed during pipeline execution * for each unique {@link DataSourceConfiguration} within the pipeline. */ public static class DataSourceProviderFromDataSourceConfiguration implements SerializableFunction, HasDisplayData { private static final ConcurrentHashMap instances = new ConcurrentHashMap<>(); private final DataSourceConfiguration config; private DataSourceProviderFromDataSourceConfiguration(DataSourceConfiguration config) { this.config = config; } public static SerializableFunction of(DataSourceConfiguration config) { return new DataSourceProviderFromDataSourceConfiguration(config); } @Override public DataSource apply(Void input) { return instances.computeIfAbsent(config, DataSourceConfiguration::buildDatasource); } @Override public void populateDisplayData(DisplayData.Builder builder) { config.populateDisplayData(builder); } } /** * {@link DoFn} class to write results data to a JDBC sink. It supports writing rows one by one * (and returning individual results) - or by batch. * * @param * @param */ static class WriteFn extends DoFn, V> { @AutoValue abstract static class WriteFnSpec implements Serializable, HasDisplayData { @Override public void populateDisplayData(DisplayData.Builder builder) { builder .addIfNotNull( DisplayData.item( "dataSourceProviderFn", getDataSourceProviderFn() == null ? "null" : getDataSourceProviderFn().getClass().getName())) .addIfNotNull(DisplayData.item("statement", getStatement())) .addIfNotNull( DisplayData.item( "preparedStatementSetter", getPreparedStatementSetter() == null ? "null" : getPreparedStatementSetter().getClass().getName())) .addIfNotNull( DisplayData.item( "retryConfiguration", getRetryConfiguration() == null ? "null" : getRetryConfiguration().getClass().getName())) .addIfNotNull(DisplayData.item("table", getTable())) .addIfNotNull( DisplayData.item( "rowMapper", getRowMapper() == null ? "null" : getRowMapper().getClass().toString())) .addIfNotNull(DisplayData.item("batchSize", getBatchSize())); } @Pure abstract @Nullable SerializableFunction getDataSourceProviderFn(); @Pure abstract @Nullable ValueProvider getStatement(); @Pure abstract @Nullable PreparedStatementSetter getPreparedStatementSetter(); @Pure abstract @Nullable RetryStrategy getRetryStrategy(); @Pure abstract @Nullable RetryConfiguration getRetryConfiguration(); @Pure abstract @Nullable String getTable(); @Pure abstract @Nullable RowMapper getRowMapper(); @Pure abstract @Nullable Long getBatchSize(); @Pure abstract @Nullable Long getMaxBatchBufferingDuration(); @Pure abstract Boolean getReturnResults(); @Pure static Builder builder() { return new AutoValue_JdbcIO_WriteFn_WriteFnSpec.Builder(); } @AutoValue.Builder abstract static class Builder { abstract Builder setDataSourceProviderFn( @Nullable SerializableFunction fn); abstract Builder setStatement(@Nullable ValueProvider statement); abstract Builder setPreparedStatementSetter( @Nullable PreparedStatementSetter setter); abstract Builder setRetryStrategy(@Nullable RetryStrategy retryStrategy); abstract Builder setRetryConfiguration( @Nullable RetryConfiguration retryConfiguration); abstract Builder setTable(@Nullable String table); abstract Builder setRowMapper(@Nullable RowMapper rowMapper); abstract Builder setBatchSize(@Nullable Long batchSize); abstract Builder setMaxBatchBufferingDuration( @Nullable Long maxBatchBufferingDuration); abstract Builder setReturnResults(Boolean returnResults); abstract WriteFnSpec build(); } } private static final Distribution RECORDS_PER_BATCH = Metrics.distribution(WriteFn.class, "records_per_jdbc_batch"); private static final Distribution MS_PER_BATCH = Metrics.distribution(WriteFn.class, "milliseconds_per_batch"); private final WriteFnSpec spec; private @Nullable DataSource dataSource; private @Nullable Connection connection; private @Nullable PreparedStatement preparedStatement; private static @Nullable FluentBackoff retryBackOff; public WriteFn(WriteFnSpec spec) { this.spec = spec; } @Override public void populateDisplayData(DisplayData.Builder builder) { spec.populateDisplayData(builder); builder.add( DisplayData.item( "query", preparedStatement == null ? "null" : preparedStatement.toString())); builder.add( DisplayData.item("dataSource", dataSource == null ? "null" : dataSource.toString())); builder.add(DisplayData.item("spec", spec == null ? "null" : spec.toString())); } @Setup public void setup() { dataSource = checkStateNotNull(spec.getDataSourceProviderFn()).apply(null); RetryConfiguration retryConfiguration = checkStateNotNull(spec.getRetryConfiguration()); retryBackOff = FluentBackoff.DEFAULT .withInitialBackoff(checkStateNotNull(retryConfiguration.getInitialDuration())) .withMaxCumulativeBackoff(checkStateNotNull(retryConfiguration.getMaxDuration())) .withMaxRetries(retryConfiguration.getMaxAttempts()); } private Connection getConnection() throws SQLException { Connection connection = this.connection; if (connection == null) { connection = checkStateNotNull(dataSource).getConnection(); connection.setAutoCommit(false); preparedStatement = connection.prepareStatement(checkStateNotNull(spec.getStatement()).get()); this.connection = connection; } return connection; } @ProcessElement public void processElement(ProcessContext context) throws Exception { executeBatch(context, context.element()); } @FinishBundle public void finishBundle() throws Exception { // We pass a null context because we only execute a final batch for WriteVoid cases. cleanUpStatementAndConnection(); } @Teardown public void tearDown() throws Exception { cleanUpStatementAndConnection(); } private void cleanUpStatementAndConnection() throws Exception { try { if (preparedStatement != null) { try { preparedStatement.close(); } finally { preparedStatement = null; } } } finally { if (connection != null) { try { connection.close(); } finally { connection = null; } } } } private void executeBatch(ProcessContext context, Iterable records) throws SQLException, IOException, InterruptedException { Long startTimeNs = System.nanoTime(); Sleeper sleeper = Sleeper.DEFAULT; BackOff backoff = checkStateNotNull(retryBackOff).backoff(); RetryStrategy retryStrategy = checkStateNotNull(spec.getRetryStrategy()); while (true) { try (PreparedStatement preparedStatement = getConnection().prepareStatement(checkStateNotNull(spec.getStatement()).get())) { try { // add each record in the statement batch int recordsInBatch = 0; for (T record : records) { processRecord(record, preparedStatement, context); recordsInBatch += 1; } if (!spec.getReturnResults()) { // execute the batch preparedStatement.executeBatch(); // commit the changes getConnection().commit(); } RECORDS_PER_BATCH.update(recordsInBatch); MS_PER_BATCH.update(TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startTimeNs)); break; } catch (SQLException exception) { LOG.trace( "SQL exception thrown while writing to JDBC database: {}", exception.getMessage()); if (!retryStrategy.apply(exception)) { throw exception; } LOG.warn("Deadlock detected, retrying", exception); // clean up the statement batch and the connection state preparedStatement.clearBatch(); if (connection != null) { connection.rollback(); } if (!BackOffUtils.next(sleeper, backoff)) { // we tried the max number of times throw exception; } } } } } private void processRecord(T record, PreparedStatement preparedStatement, ProcessContext c) { try { preparedStatement.clearParameters(); checkStateNotNull(spec.getPreparedStatementSetter()) .setParameters(record, preparedStatement); if (spec.getReturnResults()) { RowMapper rowMapper = checkStateNotNull(spec.getRowMapper()); // execute the statement preparedStatement.execute(); // commit the changes getConnection().commit(); c.output(rowMapper.mapRow(preparedStatement.getResultSet())); } else { preparedStatement.addBatch(); } } catch (Exception e) { throw new RuntimeException(e); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy