org.apache.bookkeeper.client.WeightedRandomSelectionImpl Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.bookkeeper.client;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
class WeightedRandomSelectionImpl implements WeightedRandomSelection {
static final Logger LOG = LoggerFactory.getLogger(WeightedRandomSelectionImpl.class);
Double randomMax;
int maxProbabilityMultiplier;
Map map;
TreeMap cummulativeMap = new TreeMap();
ReadWriteLock rwLock = new ReentrantReadWriteLock(true);
WeightedRandomSelectionImpl() {
maxProbabilityMultiplier = -1;
}
WeightedRandomSelectionImpl(int maxMultiplier) {
this.maxProbabilityMultiplier = maxMultiplier;
}
@Override
public void updateMap(Map map) {
// get the sum total of all the values; this will be used to
// calculate the weighted probability later on
Long totalWeight = 0L, min = Long.MAX_VALUE;
List values = new ArrayList(map.values());
Collections.sort(values, new Comparator() {
@Override
public int compare(WeightedObject o1, WeightedObject o2) {
long diff = o1.getWeight() - o2.getWeight();
if (diff < 0L) {
return -1;
} else if (diff > 0L) {
return 1;
} else {
return 0;
}
}
});
for (int i = 0; i < values.size(); i++) {
totalWeight += values.get(i).getWeight();
if (values.get(i).getWeight() != 0 && min > values.get(i).getWeight()) {
min = values.get(i).getWeight();
}
}
double median = 0;
if (totalWeight == 0) {
// all the values are zeros; assign a value of 1 to all and the totalWeight equal
// to the size of the values
min = 1L;
median = 1;
totalWeight = (long) values.size();
} else {
int mid = values.size() / 2;
if ((values.size() % 2) == 1) {
median = values.get(mid).getWeight();
} else {
median = (double) (values.get(mid - 1).getWeight() + values.get(mid).getWeight()) / 2;
}
}
double medianWeight, minWeight;
medianWeight = median / (double) totalWeight;
minWeight = (double) min / totalWeight;
if (LOG.isDebugEnabled()) {
LOG.debug("Updating weights map. MediaWeight: {} MinWeight: {}", medianWeight, minWeight);
}
double maxWeight = maxProbabilityMultiplier * medianWeight;
Map weightMap = new HashMap();
for (Map.Entry e : map.entrySet()) {
double weightedProbability;
if (e.getValue().getWeight() > 0) {
weightedProbability = (double) e.getValue().getWeight() / (double) totalWeight;
} else {
weightedProbability = minWeight;
}
if (maxWeight > 0 && weightedProbability > maxWeight) {
weightedProbability = maxWeight;
if (LOG.isDebugEnabled()) {
LOG.debug("Capping the probability to {} for {} Value: {}",
weightedProbability, e.getKey(), e.getValue());
}
}
weightMap.put(e.getKey(), weightedProbability);
}
// The probability of picking a bookie randomly is defaultPickProbability
// but we change that priority by looking at the weight that each bookie
// carries.
TreeMap tmpCummulativeMap = new TreeMap();
Double key = 0.0;
for (Map.Entry e : weightMap.entrySet()) {
tmpCummulativeMap.put(key, e.getKey());
if (LOG.isDebugEnabled()) {
LOG.debug("Key: {} Value: {} AssignedKey: {} AssignedWeight: {}",
e.getKey(), e.getValue(), key, e.getValue());
}
key += e.getValue();
}
rwLock.writeLock().lock();
try {
this.map = map;
cummulativeMap = tmpCummulativeMap;
randomMax = key;
} finally {
rwLock.writeLock().unlock();
}
}
@Override
public T getNextRandom() {
rwLock.readLock().lock();
try {
// pick a random number between 0 and randMax
Double randomNum = randomMax * Math.random();
// find the nearest key in the map corresponding to the randomNum
Double key = cummulativeMap.floorKey(randomNum);
return cummulativeMap.get(key);
} finally {
rwLock.readLock().unlock();
}
}
@Override
public void setMaxProbabilityMultiplier(int max) {
this.maxProbabilityMultiplier = max;
}
@Override
public T getNextRandom(Collection selectedNodes) {
throw new UnsupportedOperationException("getNextRandom is not implemented for WeightedRandomSelectionImpl");
}
}