Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import java.util.Locale
import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.language.implicitConversions
import org.apache.commons.lang.StringUtils
import org.apache.spark.sql.catalyst.analysis.NoSuchTableException
import org.apache.spark.sql.catalyst.catalog.CatalogTable
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.execution.command.{TableModel, TableNewProcessor}
import org.apache.spark.sql.execution.strategy.CarbonLateDecodeStrategy
import org.apache.spark.sql.execution.streaming.Sink
import org.apache.spark.sql.hive.CarbonMetaStore
import org.apache.spark.sql.optimizer.CarbonLateDecodeRule
import org.apache.spark.sql.parser.CarbonSpark2SqlParser
import org.apache.spark.sql.sources._
import org.apache.spark.sql.streaming.OutputMode
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.CarbonException
import org.apache.carbondata.common.exceptions.sql.MalformedCarbonCommandException
import org.apache.carbondata.common.logging.LogServiceFactory
import org.apache.carbondata.core.metadata.AbsoluteTableIdentifier
import org.apache.carbondata.core.metadata.schema.SchemaEvolutionEntry
import org.apache.carbondata.core.metadata.schema.table.TableInfo
import org.apache.carbondata.core.util.{CarbonProperties, CarbonUtil}
import org.apache.carbondata.spark.CarbonOption
import org.apache.carbondata.spark.util.CarbonScalaUtil
import org.apache.carbondata.streaming.{CarbonStreamException, CarbonStreamingQueryListener, StreamSinkFactory}
/**
* Carbon relation provider compliant to data source api.
* Creates carbon relations
*/
class CarbonSource extends CreatableRelationProvider with RelationProvider
with SchemaRelationProvider with StreamSinkProvider with DataSourceRegister {
override def shortName(): String = "carbondata"
// will be called if hive supported create table command is provided
override def createRelation(sqlContext: SQLContext,
parameters: Map[String, String]): BaseRelation = {
CarbonEnv.getInstance(sqlContext.sparkSession)
// if path is provided we can directly create Hadoop relation. \
// Otherwise create datasource relation
val newParameters = CarbonScalaUtil.getDeserializedParameters(parameters)
newParameters.get("tablePath") match {
case Some(path) => CarbonDatasourceHadoopRelation(sqlContext.sparkSession,
Array(path),
newParameters,
None)
case _ =>
val options = new CarbonOption(newParameters)
val tablePath =
CarbonEnv.getTablePath(options.dbName, options.tableName)(sqlContext.sparkSession)
CarbonDatasourceHadoopRelation(sqlContext.sparkSession,
Array(tablePath),
newParameters,
None)
}
}
// called by any write operation like INSERT INTO DDL or DataFrame.write API
override def createRelation(
sqlContext: SQLContext,
mode: SaveMode,
parameters: Map[String, String],
data: DataFrame): BaseRelation = {
CarbonEnv.getInstance(sqlContext.sparkSession)
var newParameters = CarbonScalaUtil.getDeserializedParameters(parameters)
val options = new CarbonOption(newParameters)
val isExists = CarbonEnv.getInstance(sqlContext.sparkSession).carbonMetastore.tableExists(
options.tableName, options.dbName)(sqlContext.sparkSession)
val (doSave, doAppend) = (mode, isExists) match {
case (SaveMode.ErrorIfExists, true) =>
CarbonException.analysisException(s"table path already exists.")
case (SaveMode.Overwrite, true) =>
newParameters += (("overwrite", "true"))
(true, false)
case (SaveMode.Overwrite, false) | (SaveMode.ErrorIfExists, false) =>
newParameters += (("overwrite", "true"))
(true, false)
case (SaveMode.Append, _) =>
(false, true)
case (SaveMode.Ignore, exists) =>
(!exists, false)
}
if (doSave) {
// save data when the save mode is Overwrite.
new CarbonDataFrameWriter(sqlContext, data).saveAsCarbonFile(
CaseInsensitiveMap[String](newParameters))
} else if (doAppend) {
new CarbonDataFrameWriter(sqlContext, data).appendToCarbonFile(
CaseInsensitiveMap[String](newParameters))
}
createRelation(sqlContext, newParameters, data.schema)
}
// called by DDL operation with a USING clause
override def createRelation(
sqlContext: SQLContext,
parameters: Map[String, String],
dataSchema: StructType): BaseRelation = {
CarbonEnv.getInstance(sqlContext.sparkSession)
addLateDecodeOptimization(sqlContext.sparkSession)
val newParameters =
CaseInsensitiveMap[String](CarbonScalaUtil.getDeserializedParameters(parameters))
val dbName: String =
CarbonEnv.getDatabaseName(newParameters.get("dbName"))(sqlContext.sparkSession)
val tableOption: Option[String] = newParameters.get("tableName")
if (tableOption.isEmpty) {
CarbonException.analysisException("Table creation failed. Table name is not specified")
}
val tableName = tableOption.get.toLowerCase()
if (tableName.contains(" ")) {
CarbonException.analysisException(
"Table creation failed. Table name cannot contain blank space")
}
val (path, updatedParams) = if (sqlContext.sparkSession.sessionState.catalog.listTables(dbName)
.exists(_.table.equalsIgnoreCase(tableName))) {
getPathForTable(sqlContext.sparkSession, dbName, tableName, newParameters)
} else {
createTableIfNotExists(sqlContext.sparkSession, newParameters, dataSchema)
}
CarbonDatasourceHadoopRelation(sqlContext.sparkSession, Array(path), updatedParams,
Option(dataSchema))
}
private def addLateDecodeOptimization(ss: SparkSession): Unit = {
if (ss.sessionState.experimentalMethods.extraStrategies.isEmpty) {
ss.sessionState.experimentalMethods.extraStrategies = Seq(new CarbonLateDecodeStrategy)
ss.sessionState.experimentalMethods.extraOptimizations = Seq(new CarbonLateDecodeRule)
}
}
private def createTableIfNotExists(
sparkSession: SparkSession,
parameters: Map[String, String],
dataSchema: StructType): (String, Map[String, String]) = {
val dbName: String = CarbonEnv.getDatabaseName(parameters.get("dbName"))(sparkSession)
val tableName: String = parameters.getOrElse("tableName", "").toLowerCase
try {
val carbonTable = CarbonEnv.getCarbonTable(Some(dbName), tableName)(sparkSession)
(carbonTable.getTablePath, parameters)
} catch {
case _: NoSuchTableException =>
val metaStore = CarbonEnv.getInstance(sparkSession).carbonMetastore
val identifier = AbsoluteTableIdentifier.from(
CarbonEnv.getTablePath(Some(dbName), tableName)(sparkSession),
dbName,
tableName)
val updatedParams = CarbonSource.updateAndCreateTable(
identifier, dataSchema, sparkSession, metaStore, parameters, None)
(CarbonEnv.getTablePath(Some(dbName), tableName)(sparkSession), updatedParams)
case ex: Exception =>
throw new Exception("do not have dbname and tablename for carbon table", ex)
}
}
/**
* Returns the path of the table
*
* @param sparkSession
* @param dbName
* @param tableName
* @return
*/
private def getPathForTable(sparkSession: SparkSession, dbName: String,
tableName : String, parameters: Map[String, String]): (String, Map[String, String]) = {
if (StringUtils.isBlank(tableName)) {
throw new MalformedCarbonCommandException("The Specified Table Name is Blank")
}
if (tableName.contains(" ")) {
throw new MalformedCarbonCommandException("Table Name Should not have spaces ")
}
try {
if (parameters.contains("tablePath")) {
(parameters("tablePath"), parameters)
} else if (!sparkSession.isInstanceOf[CarbonSession]) {
(CarbonProperties.getStorePath + "/" + dbName + "/" + tableName, parameters)
} else {
(CarbonEnv.getTablePath(Some(dbName), tableName)(sparkSession), parameters)
}
} catch {
case ex: Exception =>
throw new Exception(s"Do not have $dbName and $tableName", ex)
}
}
/**
* produce a streaming `Sink` for a specific format
* now it will create a default sink(CarbonAppendableStreamSink) for row format
*/
override def createSink(sqlContext: SQLContext,
parameters: Map[String, String],
partitionColumns: Seq[String],
outputMode: OutputMode): Sink = {
// check "tablePath" option
val options = new CarbonOption(parameters)
val dbName = CarbonEnv.getDatabaseName(options.dbName)(sqlContext.sparkSession)
val tableName = options.tableName
if (tableName.contains(" ")) {
throw new CarbonStreamException("Table creation failed. Table name cannot contain blank " +
"space")
}
val sparkSession = sqlContext.sparkSession
val carbonTable = CarbonEnv.getCarbonTable(Some(dbName), tableName)(sparkSession)
if (!carbonTable.isStreamingTable) {
throw new CarbonStreamException(s"Table ${carbonTable.getDatabaseName}." +
s"${carbonTable.getTableName} is not a streaming table")
}
// CarbonSession has added CarbonStreamingQueryListener during the initialization.
// But other SparkSessions didn't, so here will add the listener once.
if (!"CarbonSession".equals(sparkSession.getClass.getSimpleName)) {
if (CarbonSource.listenerAdded.get(sparkSession.hashCode()).isEmpty) {
synchronized {
if (CarbonSource.listenerAdded.get(sparkSession.hashCode()).isEmpty) {
sparkSession.streams.addListener(new CarbonStreamingQueryListener(sparkSession))
CarbonSource.listenerAdded.put(sparkSession.hashCode(), true)
}
}
}
}
// create sink
StreamSinkFactory.createStreamTableSink(
sqlContext.sparkSession,
sqlContext.sparkSession.sessionState.newHadoopConf(),
carbonTable,
parameters)
}
}
object CarbonSource {
lazy val listenerAdded = new mutable.HashMap[Int, Boolean]()
def createTableInfoFromParams(
parameters: Map[String, String],
dataSchema: StructType,
identifier: AbsoluteTableIdentifier,
query: Option[LogicalPlan],
sparkSession: SparkSession): TableModel = {
val sqlParser = new CarbonSpark2SqlParser
val map = scala.collection.mutable.Map[String, String]()
parameters.foreach { case (key, value) => map.put(key, value.toLowerCase()) }
val options = new CarbonOption(parameters)
val fields = query match {
case Some(q) =>
// if query is provided then it is a CTAS flow
if (sqlParser.getFields(dataSchema).nonEmpty) {
throw new AnalysisException(
"Schema cannot be specified in a Create Table As Select (CTAS) statement")
}
sqlParser
.getFields(CarbonEnv.getInstance(sparkSession).carbonMetastore
.getSchemaFromUnresolvedRelation(sparkSession, q))
case None =>
sqlParser.getFields(dataSchema)
}
val bucketFields = sqlParser.getBucketFields(map, fields, options)
sqlParser.prepareTableModel(ifNotExistPresent = false, Option(identifier.getDatabaseName),
identifier.getTableName, fields, Nil, map, bucketFields)
}
/**
* Update spark catalog table with schema information in case of schema storage is hive metastore
* @param tableDesc
* @param sparkSession
* @return
*/
def updateCatalogTableWithCarbonSchema(
tableDesc: CatalogTable,
sparkSession: SparkSession,
query: Option[LogicalPlan] = None): CatalogTable = {
val metaStore = CarbonEnv.getInstance(sparkSession).carbonMetastore
val storageFormat = tableDesc.storage
val properties = storageFormat.properties
if (!properties.contains("carbonSchemaPartsNo")) {
val tablePath = CarbonEnv.getTablePath(
tableDesc.identifier.database, tableDesc.identifier.table)(sparkSession)
val dbName = CarbonEnv.getDatabaseName(tableDesc.identifier.database)(sparkSession)
val identifier = AbsoluteTableIdentifier.from(tablePath, dbName, tableDesc.identifier.table)
val map = updateAndCreateTable(
identifier,
tableDesc.schema,
sparkSession,
metaStore,
properties,
query)
// updating params
val updatedFormat = storageFormat.copy(properties = map)
tableDesc.copy(storage = updatedFormat)
} else {
val tableInfo = CarbonUtil.convertGsonToTableInfo(properties.asJava)
val isExternal = properties.getOrElse("isExternal", "false")
val isTransactionalTable = properties.getOrElse("isTransactional", "true")
.contains("true")
tableInfo.setTransactionalTable(isTransactionalTable)
if (isTransactionalTable && !metaStore.isReadFromHiveMetaStore) {
// save to disk
metaStore.saveToDisk(tableInfo, properties("tablePath"))
// remove schema string from map as we don't store carbon schema to hive metastore
val map = CarbonUtil.removeSchemaFromMap(properties.asJava)
val updatedFormat = storageFormat.copy(properties = map.asScala.toMap)
tableDesc.copy(storage = updatedFormat)
} else {
tableDesc
}
}
}
def updateAndCreateTable(
identifier: AbsoluteTableIdentifier,
dataSchema: StructType,
sparkSession: SparkSession,
metaStore: CarbonMetaStore,
properties: Map[String, String],
query: Option[LogicalPlan]): Map[String, String] = {
val model = createTableInfoFromParams(properties, dataSchema, identifier, query, sparkSession)
val tableInfo: TableInfo = TableNewProcessor(model)
val isExternal = properties.getOrElse("isExternal", "false")
val isTransactionalTable = properties.getOrElse("isTransactional", "true")
.contains("true")
val tablePath = properties.getOrElse("path", "")
tableInfo.setTablePath(identifier.getTablePath)
tableInfo.setTransactionalTable(isTransactionalTable)
tableInfo.setDatabaseName(identifier.getDatabaseName)
val schemaEvolutionEntry = new SchemaEvolutionEntry
schemaEvolutionEntry.setTimeStamp(tableInfo.getLastUpdatedTime)
tableInfo.getFactTable.getSchemaEvalution.getSchemaEvolutionEntryList.add(schemaEvolutionEntry)
val map = if (!metaStore.isReadFromHiveMetaStore && isTransactionalTable) {
metaStore.saveToDisk(tableInfo, identifier.getTablePath)
new java.util.HashMap[String, String]()
} else {
CarbonUtil.convertToMultiStringMap(tableInfo)
}
properties.foreach(e => map.put(e._1, e._2))
map.put("tablepath", identifier.getTablePath)
map.put("dbname", identifier.getDatabaseName)
if (map.containsKey("tableName")) {
val LOGGER = LogServiceFactory.getLogService(this.getClass.getCanonicalName)
LOGGER.warn("tableName is not required in options, ignoring it")
}
map.put("tableName", identifier.getTableName)
map.asScala.toMap
}
}
/**
* Code ported from Apache Spark
* Builds a map in which keys are case insensitive. Input map can be accessed for cases where
* case-sensitive information is required. The primary constructor is marked private to avoid
* nested case-insensitive map creation, otherwise the keys in the original map will become
* case-insensitive in this scenario.
*/
case class CaseInsensitiveMap[T] (originalMap: Map[String, T]) extends Map[String, T]
with Serializable {
val keyLowerCasedMap = originalMap.map(kv => kv.copy(_1 = kv._1.toLowerCase(Locale.ROOT)))
override def get(k: String): Option[T] = keyLowerCasedMap.get(k.toLowerCase(Locale.ROOT))
override def contains(k: String): Boolean =
keyLowerCasedMap.contains(k.toLowerCase(Locale.ROOT))
override def +[B1 >: T](kv: (String, B1)): Map[String, B1] = {
new CaseInsensitiveMap(originalMap + kv)
}
override def iterator: Iterator[(String, T)] = keyLowerCasedMap.iterator
override def -(key: String): Map[String, T] = {
new CaseInsensitiveMap(originalMap.filterKeys(!_.equalsIgnoreCase(key)))
}
}