All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.schema.LegacySchemaMigrator Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.schema;

import java.nio.ByteBuffer;
import java.util.*;
import java.util.stream.Collectors;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.collect.HashMultimap;
import com.google.common.collect.ImmutableList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.apache.cassandra.config.*;
import org.apache.cassandra.cql3.ColumnIdentifier;
import org.apache.cassandra.cql3.FieldIdentifier;
import org.apache.cassandra.cql3.QueryProcessor;
import org.apache.cassandra.cql3.SuperColumnCompatibility;
import org.apache.cassandra.cql3.UntypedResultSet;
import org.apache.cassandra.cql3.functions.FunctionName;
import org.apache.cassandra.cql3.functions.UDAggregate;
import org.apache.cassandra.cql3.functions.UDFunction;
import org.apache.cassandra.db.*;
import org.apache.cassandra.db.compaction.AbstractCompactionStrategy;
import org.apache.cassandra.db.marshal.*;
import org.apache.cassandra.db.rows.RowIterator;
import org.apache.cassandra.db.rows.UnfilteredRowIterators;
import org.apache.cassandra.exceptions.InvalidRequestException;
import org.apache.cassandra.utils.FBUtilities;

import static java.lang.String.format;
import static org.apache.cassandra.utils.ByteBufferUtil.bytes;
import static org.apache.cassandra.utils.FBUtilities.fromJsonMap;

/**
 * This majestic class performs migration from legacy (pre-3.0) system.schema_* schema tables to the new and glorious
 * system_schema keyspace.
 *
 * The goal is to not lose any information in the migration - including the timestamps.
 */
@SuppressWarnings("deprecation")
public final class LegacySchemaMigrator
{
    private LegacySchemaMigrator()
    {
    }

    private static final Logger logger = LoggerFactory.getLogger(LegacySchemaMigrator.class);

    static final List LegacySchemaTables =
        ImmutableList.of(SystemKeyspace.LegacyKeyspaces,
                         SystemKeyspace.LegacyColumnfamilies,
                         SystemKeyspace.LegacyColumns,
                         SystemKeyspace.LegacyTriggers,
                         SystemKeyspace.LegacyUsertypes,
                         SystemKeyspace.LegacyFunctions,
                         SystemKeyspace.LegacyAggregates);

    public static void migrate()
    {
        // read metadata from the legacy schema tables
        Collection keyspaces = readSchema();

        // if already upgraded, or starting a new 3.0 node, abort early
        if (keyspaces.isEmpty())
        {
            unloadLegacySchemaTables();
            return;
        }

        // write metadata to the new schema tables
        logger.info("Moving {} keyspaces from legacy schema tables to the new schema keyspace ({})",
                    keyspaces.size(),
                    SchemaConstants.SCHEMA_KEYSPACE_NAME);
        keyspaces.forEach(LegacySchemaMigrator::storeKeyspaceInNewSchemaTables);
        keyspaces.forEach(LegacySchemaMigrator::migrateBuiltIndexesForKeyspace);

        // flush the new tables before truncating the old ones
        SchemaKeyspace.flush();

        // truncate the original tables (will be snapshotted now, and will have been snapshotted by pre-flight checks)
        logger.info("Truncating legacy schema tables");
        truncateLegacySchemaTables();

        // remove legacy schema tables from Schema, so that their presence doesn't give the users any wrong ideas
        unloadLegacySchemaTables();

        logger.info("Completed migration of legacy schema tables");
    }

    private static void migrateBuiltIndexesForKeyspace(Keyspace keyspace)
    {
        keyspace.tables.forEach(LegacySchemaMigrator::migrateBuiltIndexesForTable);
    }

    private static void migrateBuiltIndexesForTable(Table table)
    {
        table.metadata.getIndexes().forEach((index) -> migrateIndexBuildStatus(table.metadata.ksName,
                                                                               table.metadata.cfName,
                                                                               index));
    }

    private static void migrateIndexBuildStatus(String keyspace, String table, IndexMetadata index)
    {
        if (SystemKeyspace.isIndexBuilt(keyspace, table + '.' + index.name))
        {
            SystemKeyspace.setIndexBuilt(keyspace, index.name);
            SystemKeyspace.setIndexRemoved(keyspace, table + '.' + index.name);
        }
    }

    static void unloadLegacySchemaTables()
    {
        KeyspaceMetadata systemKeyspace = Schema.instance.getKSMetaData(SchemaConstants.SYSTEM_KEYSPACE_NAME);

        Tables systemTables = systemKeyspace.tables;
        for (CFMetaData table : LegacySchemaTables)
            systemTables = systemTables.without(table.cfName);

        LegacySchemaTables.forEach(Schema.instance::unload);
        LegacySchemaTables.forEach((cfm) -> org.apache.cassandra.db.Keyspace.openAndGetStore(cfm).invalidate());

        Schema.instance.setKeyspaceMetadata(systemKeyspace.withSwapped(systemTables));
    }

    private static void truncateLegacySchemaTables()
    {
        LegacySchemaTables.forEach(table -> Schema.instance.getColumnFamilyStoreInstance(table.cfId).truncateBlocking());
    }

    private static void storeKeyspaceInNewSchemaTables(Keyspace keyspace)
    {
        logger.info("Migrating keyspace {}", keyspace);

        Mutation.SimpleBuilder builder = SchemaKeyspace.makeCreateKeyspaceMutation(keyspace.name, keyspace.params, keyspace.timestamp);
        for (Table table : keyspace.tables)
            SchemaKeyspace.addTableToSchemaMutation(table.metadata, true, builder.timestamp(table.timestamp));

        for (Type type : keyspace.types)
            SchemaKeyspace.addTypeToSchemaMutation(type.metadata, builder.timestamp(type.timestamp));

        for (Function function : keyspace.functions)
            SchemaKeyspace.addFunctionToSchemaMutation(function.metadata, builder.timestamp(function.timestamp));

        for (Aggregate aggregate : keyspace.aggregates)
            SchemaKeyspace.addAggregateToSchemaMutation(aggregate.metadata, builder.timestamp(aggregate.timestamp));

        builder.build().apply();
    }

    /*
     * Read all keyspaces metadata (including nested tables, types, and functions), with their modification timestamps
     */
    private static Collection readSchema()
    {
        String query = format("SELECT keyspace_name FROM %s.%s", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_KEYSPACES);
        Collection keyspaceNames = new ArrayList<>();
        query(query).forEach(row -> keyspaceNames.add(row.getString("keyspace_name")));
        keyspaceNames.removeAll(SchemaConstants.LOCAL_SYSTEM_KEYSPACE_NAMES);

        Collection keyspaces = new ArrayList<>();
        keyspaceNames.forEach(name -> keyspaces.add(readKeyspace(name)));
        return keyspaces;
    }

    private static Keyspace readKeyspace(String keyspaceName)
    {
        long timestamp = readKeyspaceTimestamp(keyspaceName);
        KeyspaceParams params = readKeyspaceParams(keyspaceName);

        Collection tables = readTables(keyspaceName);
        Collection types = readTypes(keyspaceName);
        Collection functions = readFunctions(keyspaceName);
        Functions.Builder functionsBuilder = Functions.builder();
        functions.forEach(udf -> functionsBuilder.add(udf.metadata));
        Collection aggregates = readAggregates(functionsBuilder.build(), keyspaceName);

        return new Keyspace(timestamp, keyspaceName, params, tables, types, functions, aggregates);
    }

    /*
     * Reading keyspace params
     */

    private static long readKeyspaceTimestamp(String keyspaceName)
    {
        String query = format("SELECT writeTime(durable_writes) AS timestamp FROM %s.%s WHERE keyspace_name = ?",
                              SchemaConstants.SYSTEM_KEYSPACE_NAME,
                              SystemKeyspace.LEGACY_KEYSPACES);
        return query(query, keyspaceName).one().getLong("timestamp");
    }

    private static KeyspaceParams readKeyspaceParams(String keyspaceName)
    {
        String query = format("SELECT * FROM %s.%s WHERE keyspace_name = ?",
                              SchemaConstants.SYSTEM_KEYSPACE_NAME,
                              SystemKeyspace.LEGACY_KEYSPACES);
        UntypedResultSet.Row row = query(query, keyspaceName).one();

        boolean durableWrites = row.getBoolean("durable_writes");

        Map replication = new HashMap<>();
        replication.putAll(fromJsonMap(row.getString("strategy_options")));
        replication.put(ReplicationParams.CLASS, row.getString("strategy_class"));

        return KeyspaceParams.create(durableWrites, replication);
    }

    /*
     * Reading tables
     */

    private static Collection
readTables(String keyspaceName) { String query = format("SELECT columnfamily_name FROM %s.%s WHERE keyspace_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_COLUMNFAMILIES); Collection tableNames = new ArrayList<>(); query(query, keyspaceName).forEach(row -> tableNames.add(row.getString("columnfamily_name"))); Collection
tables = new ArrayList<>(); tableNames.forEach(name -> tables.add(readTable(keyspaceName, name))); return tables; } private static Table readTable(String keyspaceName, String tableName) { long timestamp = readTableTimestamp(keyspaceName, tableName); CFMetaData metadata = readTableMetadata(keyspaceName, tableName); return new Table(timestamp, metadata); } private static long readTableTimestamp(String keyspaceName, String tableName) { String query = format("SELECT writeTime(type) AS timestamp FROM %s.%s WHERE keyspace_name = ? AND columnfamily_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_COLUMNFAMILIES); return query(query, keyspaceName, tableName).one().getLong("timestamp"); } private static CFMetaData readTableMetadata(String keyspaceName, String tableName) { String tableQuery = format("SELECT * FROM %s.%s WHERE keyspace_name = ? AND columnfamily_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_COLUMNFAMILIES); UntypedResultSet.Row tableRow = query(tableQuery, keyspaceName, tableName).one(); String columnsQuery = format("SELECT * FROM %s.%s WHERE keyspace_name = ? AND columnfamily_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_COLUMNS); UntypedResultSet columnRows = query(columnsQuery, keyspaceName, tableName); String triggersQuery = format("SELECT * FROM %s.%s WHERE keyspace_name = ? AND columnfamily_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_TRIGGERS); UntypedResultSet triggerRows = query(triggersQuery, keyspaceName, tableName); return decodeTableMetadata(tableName, tableRow, columnRows, triggerRows); } private static CFMetaData decodeTableMetadata(String tableName, UntypedResultSet.Row tableRow, UntypedResultSet columnRows, UntypedResultSet triggerRows) { String ksName = tableRow.getString("keyspace_name"); String cfName = tableRow.getString("columnfamily_name"); AbstractType rawComparator = TypeParser.parse(tableRow.getString("comparator")); AbstractType subComparator = tableRow.has("subcomparator") ? TypeParser.parse(tableRow.getString("subcomparator")) : null; boolean isSuper = "super".equals(tableRow.getString("type").toLowerCase(Locale.ENGLISH)); boolean isCompound = rawComparator instanceof CompositeType || isSuper; /* * Determine whether or not the table is *really* dense * We cannot trust is_dense value of true (see CASSANDRA-11502, that fixed the issue for 2.2 only, and not retroactively), * but we can trust is_dense value of false. */ Boolean rawIsDense = tableRow.has("is_dense") ? tableRow.getBoolean("is_dense") : null; boolean isDense; if (rawIsDense != null && !rawIsDense) isDense = false; else isDense = calculateIsDense(rawComparator, columnRows, isSuper); // now, if switched to sparse, remove redundant compact_value column and the last clustering column, // directly copying CASSANDRA-11502 logic. See CASSANDRA-11315. Iterable filteredColumnRows = !isDense && (rawIsDense == null || rawIsDense) ? filterOutRedundantRowsForSparse(columnRows, isSuper, isCompound) : columnRows; // We don't really use the default validator but as we have it for backward compatibility, we use it to know if it's a counter table AbstractType defaultValidator = TypeParser.parse(tableRow.getString("default_validator")); boolean isCounter = defaultValidator instanceof CounterColumnType; /* * With CASSANDRA-5202 we stopped inferring the cf id from the combination of keyspace/table names, * and started storing the generated uuids in system.schema_columnfamilies. * * In 3.0 we SHOULD NOT see tables like that (2.0-created, non-upgraded). * But in the off-chance that we do, we generate the deterministic uuid here. */ UUID cfId = tableRow.has("cf_id") ? tableRow.getUUID("cf_id") : CFMetaData.generateLegacyCfId(ksName, cfName); boolean isCQLTable = !isSuper && !isDense && isCompound; boolean isStaticCompactTable = !isDense && !isCompound; // Internally, compact tables have a specific layout, see CompactTables. But when upgrading from // previous versions, they may not have the expected schema, so detect if we need to upgrade and do // it in createColumnsFromColumnRows. // We can remove this once we don't support upgrade from versions < 3.0. boolean needsUpgrade = !isCQLTable && checkNeedsUpgrade(filteredColumnRows, isSuper, isStaticCompactTable); List columnDefs = createColumnsFromColumnRows(filteredColumnRows, ksName, cfName, rawComparator, subComparator, isSuper, isCQLTable, isStaticCompactTable, needsUpgrade); if (needsUpgrade) { addDefinitionForUpgrade(columnDefs, ksName, cfName, isStaticCompactTable, isSuper, rawComparator, subComparator, defaultValidator); } CFMetaData cfm = CFMetaData.create(ksName, cfName, cfId, isDense, isCompound, isSuper, isCounter, false, // legacy schema did not contain views columnDefs, DatabaseDescriptor.getPartitioner()); Indexes indexes = createIndexesFromColumnRows(cfm, filteredColumnRows, ksName, cfName, rawComparator, subComparator, isSuper, isCQLTable, isStaticCompactTable, needsUpgrade); cfm.indexes(indexes); if (tableRow.has("dropped_columns")) addDroppedColumns(cfm, rawComparator, tableRow.getMap("dropped_columns", UTF8Type.instance, LongType.instance)); return cfm.params(decodeTableParams(tableRow)) .triggers(createTriggersFromTriggerRows(triggerRows)); } /* * We call dense a CF for which each component of the comparator is a clustering column, i.e. no * component is used to store a regular column names. In other words, non-composite static "thrift" * and CQL3 CF are *not* dense. * We save whether the table is dense or not during table creation through CQL, but we don't have this * information for table just created through thrift, nor for table prior to CASSANDRA-7744, so this * method does its best to infer whether the table is dense or not based on other elements. */ private static boolean calculateIsDense(AbstractType comparator, UntypedResultSet columnRows, boolean isSuper) { /* * As said above, this method is only here because we need to deal with thrift upgrades. * Once a CF has been "upgraded", i.e. we've rebuilt and save its CQL3 metadata at least once, * then we'll have saved the "is_dense" value and will be good to go. * * But non-upgraded thrift CF (and pre-7744 CF) will have no value for "is_dense", so we need * to infer that information without relying on it in that case. And for the most part this is * easy, a CF that has at least one REGULAR definition is not dense. But the subtlety is that not * having a REGULAR definition may not mean dense because of CQL3 definitions that have only the * PRIMARY KEY defined. * * So we need to recognize those special case CQL3 table with only a primary key. If we have some * clustering columns, we're fine as said above. So the only problem is that we cannot decide for * sure if a CF without REGULAR columns nor CLUSTERING_COLUMN definition is meant to be dense, or if it * has been created in CQL3 by say: * CREATE TABLE test (k int PRIMARY KEY) * in which case it should not be dense. However, we can limit our margin of error by assuming we are * in the latter case only if the comparator is exactly CompositeType(UTF8Type). */ for (UntypedResultSet.Row columnRow : columnRows) { if ("regular".equals(columnRow.getString("type"))) return false; } // If we've checked the columns for supercf and found no regulars, it's dense. Relying on the emptiness // of the value column is not enough due to index calculation. if (isSuper) return true; int maxClusteringIdx = -1; for (UntypedResultSet.Row columnRow : columnRows) if ("clustering_key".equals(columnRow.getString("type"))) maxClusteringIdx = Math.max(maxClusteringIdx, columnRow.has("component_index") ? columnRow.getInt("component_index") : 0); return maxClusteringIdx >= 0 ? maxClusteringIdx == comparator.componentsCount() - 1 : !isCQL3OnlyPKComparator(comparator); } private static Iterable filterOutRedundantRowsForSparse(UntypedResultSet columnRows, boolean isSuper, boolean isCompound) { Collection filteredRows = new ArrayList<>(); for (UntypedResultSet.Row columnRow : columnRows) { String kind = columnRow.getString("type"); if (!isSuper && "compact_value".equals(kind)) continue; if ("clustering_key".equals(kind) && !isSuper && !isCompound) continue; filteredRows.add(columnRow); } return filteredRows; } private static boolean isCQL3OnlyPKComparator(AbstractType comparator) { if (!(comparator instanceof CompositeType)) return false; CompositeType ct = (CompositeType)comparator; return ct.types.size() == 1 && ct.types.get(0) instanceof UTF8Type; } private static TableParams decodeTableParams(UntypedResultSet.Row row) { TableParams.Builder params = TableParams.builder(); params.readRepairChance(row.getDouble("read_repair_chance")) .dcLocalReadRepairChance(row.getDouble("local_read_repair_chance")) .gcGraceSeconds(row.getInt("gc_grace_seconds")); if (row.has("comment")) params.comment(row.getString("comment")); if (row.has("memtable_flush_period_in_ms")) params.memtableFlushPeriodInMs(row.getInt("memtable_flush_period_in_ms")); params.caching(cachingFromRow(row.getString("caching"))); if (row.has("default_time_to_live")) params.defaultTimeToLive(row.getInt("default_time_to_live")); if (row.has("speculative_retry")) params.speculativeRetry(SpeculativeRetryParam.fromString(row.getString("speculative_retry"))); Map compressionParameters = fromJsonMap(row.getString("compression_parameters")); String crcCheckChance = compressionParameters.remove("crc_check_chance"); //crc_check_chance was promoted from a compression property to a top-level property if (crcCheckChance != null) params.crcCheckChance(Double.parseDouble(crcCheckChance)); params.compression(CompressionParams.fromMap(compressionParameters)); params.compaction(compactionFromRow(row)); if (row.has("min_index_interval")) params.minIndexInterval(row.getInt("min_index_interval")); if (row.has("max_index_interval")) params.maxIndexInterval(row.getInt("max_index_interval")); if (row.has("bloom_filter_fp_chance")) params.bloomFilterFpChance(row.getDouble("bloom_filter_fp_chance")); return params.build(); } /** * * 2.1 and newer use JSON'ified map of caching parameters, but older versions had valid Strings * NONE, KEYS_ONLY, ROWS_ONLY, and ALL * * @param caching, the string representing the table's caching options * @return CachingParams object corresponding to the input string */ @VisibleForTesting public static CachingParams cachingFromRow(String caching) { switch(caching) { case "NONE": return CachingParams.CACHE_NOTHING; case "KEYS_ONLY": return CachingParams.CACHE_KEYS; case "ROWS_ONLY": return new CachingParams(false, Integer.MAX_VALUE); case "ALL": return CachingParams.CACHE_EVERYTHING; default: return CachingParams.fromMap(fromJsonMap(caching)); } } /* * The method is needed - to migrate max_compaction_threshold and min_compaction_threshold * to the compaction map, where they belong. * * We must use reflection to validate the options because not every compaction strategy respects and supports * the threshold params (LCS doesn't, STCS and DTCS do). */ @SuppressWarnings("unchecked") private static CompactionParams compactionFromRow(UntypedResultSet.Row row) { Class klass = CFMetaData.createCompactionStrategy(row.getString("compaction_strategy_class")); Map options = fromJsonMap(row.getString("compaction_strategy_options")); int minThreshold = row.getInt("min_compaction_threshold"); int maxThreshold = row.getInt("max_compaction_threshold"); Map optionsWithThresholds = new HashMap<>(options); optionsWithThresholds.putIfAbsent(CompactionParams.Option.MIN_THRESHOLD.toString(), Integer.toString(minThreshold)); optionsWithThresholds.putIfAbsent(CompactionParams.Option.MAX_THRESHOLD.toString(), Integer.toString(maxThreshold)); try { Map unrecognizedOptions = (Map) klass.getMethod("validateOptions", Map.class).invoke(null, optionsWithThresholds); if (unrecognizedOptions.isEmpty()) options = optionsWithThresholds; } catch (Exception e) { throw new RuntimeException(e); } return CompactionParams.create(klass, options); } // Should only be called on compact tables private static boolean checkNeedsUpgrade(Iterable defs, boolean isSuper, boolean isStaticCompactTable) { // For SuperColumn tables, re-create a compact value column if (isSuper) return true; // For static compact tables, we need to upgrade if the regular definitions haven't been converted to static yet, // i.e. if we don't have a static definition yet. if (isStaticCompactTable) return !hasKind(defs, ColumnDefinition.Kind.STATIC); // For dense compact tables, we need to upgrade if we don't have a compact value definition return !hasRegularColumns(defs); } private static boolean hasRegularColumns(Iterable columnRows) { for (UntypedResultSet.Row row : columnRows) { /* * We need to special case and ignore the empty compact column (pre-3.0, COMPACT STORAGE, primary-key only tables), * since deserializeKind() will otherwise just return a REGULAR. * We want the proper EmptyType regular column to be added by addDefinitionForUpgrade(), so we need * checkNeedsUpgrade() to return true in this case. * See CASSANDRA-9874. */ if (isEmptyCompactValueColumn(row)) return false; if (deserializeKind(row.getString("type")) == ColumnDefinition.Kind.REGULAR) return true; } return false; } private static boolean isEmptyCompactValueColumn(UntypedResultSet.Row row) { return "compact_value".equals(row.getString("type")) && row.getString("column_name").isEmpty(); } private static void addDefinitionForUpgrade(List defs, String ksName, String cfName, boolean isStaticCompactTable, boolean isSuper, AbstractType rawComparator, AbstractType subComparator, AbstractType defaultValidator) { CompactTables.DefaultNames names = CompactTables.defaultNameGenerator(defs); if (isSuper) { defs.add(ColumnDefinition.regularDef(ksName, cfName, SuperColumnCompatibility.SUPER_COLUMN_MAP_COLUMN_STR, MapType.getInstance(subComparator, defaultValidator, true))); } else if (isStaticCompactTable) { defs.add(ColumnDefinition.clusteringDef(ksName, cfName, names.defaultClusteringName(), rawComparator, 0)); defs.add(ColumnDefinition.regularDef(ksName, cfName, names.defaultCompactValueName(), defaultValidator)); } else { // For dense compact tables, we get here if we don't have a compact value column, in which case we should add it. // We use EmptyType to recognize that the compact value was not declared by the user (see CreateTableStatement). // If user made any writes to this column, compact value column should be initialized as bytes (see CASSANDRA-15778). AbstractType compactColumnType = Boolean.getBoolean("cassandra.init_dense_table_compact_value_as_bytes") ? BytesType.instance : EmptyType.instance; defs.add(ColumnDefinition.regularDef(ksName, cfName, names.defaultCompactValueName(), compactColumnType)); } } private static boolean hasKind(Iterable defs, ColumnDefinition.Kind kind) { for (UntypedResultSet.Row row : defs) if (deserializeKind(row.getString("type")) == kind) return true; return false; } /* * Prior to 3.0 we used to not store the type of the dropped columns, relying on all collection info being * present in the comparator, forever. That allowed us to perform certain validations in AlterTableStatement * (namely not allowing to re-add incompatible collection columns, with the same name, but a different type). * * In 3.0, we no longer preserve the original comparator, and reconstruct it from the columns instead. That means * that we should preserve the type of the dropped columns now, and, during migration, fetch the types from * the original comparator if necessary. */ private static void addDroppedColumns(CFMetaData cfm, AbstractType comparator, Map droppedTimes) { AbstractType last = comparator.getComponents().get(comparator.componentsCount() - 1); Map collections = last instanceof ColumnToCollectionType ? ((ColumnToCollectionType) last).defined : Collections.emptyMap(); for (Map.Entry entry : droppedTimes.entrySet()) { String name = entry.getKey(); ByteBuffer nameBytes = UTF8Type.instance.decompose(name); long time = entry.getValue(); AbstractType type = collections.containsKey(nameBytes) ? collections.get(nameBytes) : BytesType.instance; cfm.getDroppedColumns().put(nameBytes, new CFMetaData.DroppedColumn(name, null, type, time)); } } private static List createColumnsFromColumnRows(Iterable rows, String keyspace, String table, AbstractType rawComparator, AbstractType rawSubComparator, boolean isSuper, boolean isCQLTable, boolean isStaticCompactTable, boolean needsUpgrade) { List columns = new ArrayList<>(); for (UntypedResultSet.Row row : rows) { // Skip the empty compact value column. Make addDefinitionForUpgrade() re-add the proper REGULAR one. if (isEmptyCompactValueColumn(row)) continue; columns.add(createColumnFromColumnRow(row, keyspace, table, rawComparator, rawSubComparator, isSuper, isCQLTable, isStaticCompactTable, needsUpgrade)); } return columns; } private static ColumnDefinition createColumnFromColumnRow(UntypedResultSet.Row row, String keyspace, String table, AbstractType rawComparator, AbstractType rawSubComparator, boolean isSuper, boolean isCQLTable, boolean isStaticCompactTable, boolean needsUpgrade) { String rawKind = row.getString("type"); ColumnDefinition.Kind kind = deserializeKind(rawKind); if (needsUpgrade && isStaticCompactTable && kind == ColumnDefinition.Kind.REGULAR) kind = ColumnDefinition.Kind.STATIC; int componentIndex = ColumnDefinition.NO_POSITION; // Note that the component_index is not useful for non-primary key parts (it never really in fact since there is // no particular ordering of non-PK columns, we only used to use it as a simplification but that's not needed // anymore) if (kind.isPrimaryKeyKind()) // We use to not have a component index when there was a single partition key, we don't anymore (#10491) componentIndex = row.has("component_index") ? row.getInt("component_index") : 0; // Note: we save the column name as string, but we should not assume that it is an UTF8 name, we // we need to use the comparator fromString method AbstractType comparator = isCQLTable ? UTF8Type.instance : CompactTables.columnDefinitionComparator(rawKind, isSuper, rawComparator, rawSubComparator); ColumnIdentifier name = ColumnIdentifier.getInterned(comparator.fromString(row.getString("column_name")), comparator); AbstractType validator = parseType(row.getString("validator")); // In the 2.x schema we didn't store UDT's with a FrozenType wrapper because they were implicitly frozen. After // CASSANDRA-7423 (non-frozen UDTs), this is no longer true, so we need to freeze UDTs and nested freezable // types (UDTs and collections) to properly migrate the schema. See CASSANDRA-11609 and CASSANDRA-11613. if (validator.isUDT() && validator.isMultiCell()) validator = validator.freeze(); else validator = validator.freezeNestedMulticellTypes(); return new ColumnDefinition(keyspace, table, name, validator, componentIndex, kind); } private static Indexes createIndexesFromColumnRows(CFMetaData cfm, Iterable rows, String keyspace, String table, AbstractType rawComparator, AbstractType rawSubComparator, boolean isSuper, boolean isCQLTable, boolean isStaticCompactTable, boolean needsUpgrade) { Indexes.Builder indexes = Indexes.builder(); for (UntypedResultSet.Row row : rows) { IndexMetadata.Kind kind = null; if (row.has("index_type")) kind = IndexMetadata.Kind.valueOf(row.getString("index_type")); if (kind == null) continue; Map indexOptions = null; if (row.has("index_options")) indexOptions = fromJsonMap(row.getString("index_options")); if (row.has("index_name")) { String indexName = row.getString("index_name"); ColumnDefinition column = createColumnFromColumnRow(row, keyspace, table, rawComparator, rawSubComparator, isSuper, isCQLTable, isStaticCompactTable, needsUpgrade); indexes.add(IndexMetadata.fromLegacyMetadata(cfm, column, indexName, kind, indexOptions)); } else { logger.error("Failed to find index name for legacy migration of index on {}.{}", keyspace, table); } } return indexes.build(); } private static ColumnDefinition.Kind deserializeKind(String kind) { if ("clustering_key".equalsIgnoreCase(kind)) return ColumnDefinition.Kind.CLUSTERING; if ("compact_value".equalsIgnoreCase(kind)) return ColumnDefinition.Kind.REGULAR; return Enum.valueOf(ColumnDefinition.Kind.class, kind.toUpperCase()); } private static Triggers createTriggersFromTriggerRows(UntypedResultSet rows) { Triggers.Builder triggers = org.apache.cassandra.schema.Triggers.builder(); rows.forEach(row -> triggers.add(createTriggerFromTriggerRow(row))); return triggers.build(); } private static TriggerMetadata createTriggerFromTriggerRow(UntypedResultSet.Row row) { String name = row.getString("trigger_name"); String classOption = row.getTextMap("trigger_options").get("class"); return new TriggerMetadata(name, classOption); } /* * Reading user types */ private static Collection readTypes(String keyspaceName) { String query = format("SELECT type_name FROM %s.%s WHERE keyspace_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_USERTYPES); Collection typeNames = new ArrayList<>(); query(query, keyspaceName).forEach(row -> typeNames.add(row.getString("type_name"))); Collection types = new ArrayList<>(); typeNames.forEach(name -> types.add(readType(keyspaceName, name))); return types; } private static Type readType(String keyspaceName, String typeName) { long timestamp = readTypeTimestamp(keyspaceName, typeName); UserType metadata = readTypeMetadata(keyspaceName, typeName); return new Type(timestamp, metadata); } /* * Unfortunately there is not a single REGULAR column in system.schema_usertypes, so annoyingly we cannot * use the writeTime() CQL function, and must resort to a lower level. */ private static long readTypeTimestamp(String keyspaceName, String typeName) { ColumnFamilyStore store = org.apache.cassandra.db.Keyspace.open(SchemaConstants.SYSTEM_KEYSPACE_NAME) .getColumnFamilyStore(SystemKeyspace.LEGACY_USERTYPES); ClusteringComparator comparator = store.metadata.comparator; Slices slices = Slices.with(comparator, Slice.make(comparator, typeName)); int nowInSec = FBUtilities.nowInSeconds(); DecoratedKey key = store.metadata.decorateKey(AsciiType.instance.fromString(keyspaceName)); SinglePartitionReadCommand command = SinglePartitionReadCommand.create(store.metadata, nowInSec, key, slices); try (ReadExecutionController controller = command.executionController(); RowIterator partition = UnfilteredRowIterators.filter(command.queryMemtableAndDisk(store, controller), nowInSec)) { return partition.next().primaryKeyLivenessInfo().timestamp(); } } private static UserType readTypeMetadata(String keyspaceName, String typeName) { String query = format("SELECT * FROM %s.%s WHERE keyspace_name = ? AND type_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_USERTYPES); UntypedResultSet.Row row = query(query, keyspaceName, typeName).one(); List names = row.getList("field_names", UTF8Type.instance) .stream() .map(t -> FieldIdentifier.forInternalString(t)) .collect(Collectors.toList()); List> types = row.getList("field_types", UTF8Type.instance) .stream() .map(LegacySchemaMigrator::parseType) .collect(Collectors.toList()); return new UserType(keyspaceName, bytes(typeName), names, types, true); } /* * Reading UDFs */ private static Collection readFunctions(String keyspaceName) { String query = format("SELECT function_name, signature FROM %s.%s WHERE keyspace_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_FUNCTIONS); HashMultimap> functionSignatures = HashMultimap.create(); query(query, keyspaceName).forEach(row -> functionSignatures.put(row.getString("function_name"), row.getList("signature", UTF8Type.instance))); Collection functions = new ArrayList<>(); functionSignatures.entries().forEach(pair -> functions.add(readFunction(keyspaceName, pair.getKey(), pair.getValue()))); return functions; } private static Function readFunction(String keyspaceName, String functionName, List signature) { long timestamp = readFunctionTimestamp(keyspaceName, functionName, signature); UDFunction metadata = readFunctionMetadata(keyspaceName, functionName, signature); return new Function(timestamp, metadata); } private static long readFunctionTimestamp(String keyspaceName, String functionName, List signature) { String query = format("SELECT writeTime(return_type) AS timestamp " + "FROM %s.%s " + "WHERE keyspace_name = ? AND function_name = ? AND signature = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_FUNCTIONS); return query(query, keyspaceName, functionName, signature).one().getLong("timestamp"); } private static UDFunction readFunctionMetadata(String keyspaceName, String functionName, List signature) { String query = format("SELECT * FROM %s.%s WHERE keyspace_name = ? AND function_name = ? AND signature = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_FUNCTIONS); UntypedResultSet.Row row = query(query, keyspaceName, functionName, signature).one(); FunctionName name = new FunctionName(keyspaceName, functionName); List argNames = new ArrayList<>(); if (row.has("argument_names")) for (String arg : row.getList("argument_names", UTF8Type.instance)) argNames.add(new ColumnIdentifier(arg, true)); List> argTypes = new ArrayList<>(); if (row.has("argument_types")) for (String type : row.getList("argument_types", UTF8Type.instance)) argTypes.add(parseType(type)); AbstractType returnType = parseType(row.getString("return_type")); String language = row.getString("language"); String body = row.getString("body"); boolean calledOnNullInput = row.getBoolean("called_on_null_input"); try { return UDFunction.create(name, argNames, argTypes, returnType, calledOnNullInput, language, body); } catch (InvalidRequestException e) { return UDFunction.createBrokenFunction(name, argNames, argTypes, returnType, calledOnNullInput, language, body, e); } } /* * Reading UDAs */ private static Collection readAggregates(Functions functions, String keyspaceName) { String query = format("SELECT aggregate_name, signature FROM %s.%s WHERE keyspace_name = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_AGGREGATES); HashMultimap> aggregateSignatures = HashMultimap.create(); query(query, keyspaceName).forEach(row -> aggregateSignatures.put(row.getString("aggregate_name"), row.getList("signature", UTF8Type.instance))); Collection aggregates = new ArrayList<>(); aggregateSignatures.entries().forEach(pair -> aggregates.add(readAggregate(functions, keyspaceName, pair.getKey(), pair.getValue()))); return aggregates; } private static Aggregate readAggregate(Functions functions, String keyspaceName, String aggregateName, List signature) { long timestamp = readAggregateTimestamp(keyspaceName, aggregateName, signature); UDAggregate metadata = readAggregateMetadata(functions, keyspaceName, aggregateName, signature); return new Aggregate(timestamp, metadata); } private static long readAggregateTimestamp(String keyspaceName, String aggregateName, List signature) { String query = format("SELECT writeTime(return_type) AS timestamp " + "FROM %s.%s " + "WHERE keyspace_name = ? AND aggregate_name = ? AND signature = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_AGGREGATES); return query(query, keyspaceName, aggregateName, signature).one().getLong("timestamp"); } private static UDAggregate readAggregateMetadata(Functions functions, String keyspaceName, String functionName, List signature) { String query = format("SELECT * FROM %s.%s WHERE keyspace_name = ? AND aggregate_name = ? AND signature = ?", SchemaConstants.SYSTEM_KEYSPACE_NAME, SystemKeyspace.LEGACY_AGGREGATES); UntypedResultSet.Row row = query(query, keyspaceName, functionName, signature).one(); FunctionName name = new FunctionName(keyspaceName, functionName); List types = row.getList("argument_types", UTF8Type.instance); List> argTypes = new ArrayList<>(); if (types != null) { argTypes = new ArrayList<>(types.size()); for (String type : types) argTypes.add(parseType(type)); } AbstractType returnType = parseType(row.getString("return_type")); FunctionName stateFunc = new FunctionName(keyspaceName, row.getString("state_func")); AbstractType stateType = parseType(row.getString("state_type")); FunctionName finalFunc = row.has("final_func") ? new FunctionName(keyspaceName, row.getString("final_func")) : null; ByteBuffer initcond = row.has("initcond") ? row.getBytes("initcond") : null; try { return UDAggregate.create(functions, name, argTypes, returnType, stateFunc, finalFunc, stateType, initcond); } catch (InvalidRequestException reason) { return UDAggregate.createBroken(name, argTypes, returnType, initcond, reason); } } private static UntypedResultSet query(String query, Object... values) { return QueryProcessor.executeOnceInternal(query, values); } private static AbstractType parseType(String str) { return TypeParser.parse(str); } private static final class Keyspace { final long timestamp; final String name; final KeyspaceParams params; final Collection
tables; final Collection types; final Collection functions; final Collection aggregates; Keyspace(long timestamp, String name, KeyspaceParams params, Collection
tables, Collection types, Collection functions, Collection aggregates) { this.timestamp = timestamp; this.name = name; this.params = params; this.tables = tables; this.types = types; this.functions = functions; this.aggregates = aggregates; } } private static final class Table { final long timestamp; final CFMetaData metadata; Table(long timestamp, CFMetaData metadata) { this.timestamp = timestamp; this.metadata = metadata; } } private static final class Type { final long timestamp; final UserType metadata; Type(long timestamp, UserType metadata) { this.timestamp = timestamp; this.metadata = metadata; } } private static final class Function { final long timestamp; final UDFunction metadata; Function(long timestamp, UDFunction metadata) { this.timestamp = timestamp; this.metadata = metadata; } } private static final class Aggregate { final long timestamp; final UDAggregate metadata; Aggregate(long timestamp, UDAggregate metadata) { this.timestamp = timestamp; this.metadata = metadata; } } }