org.apache.cassandra.utils.memory.BufferPool Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cassandra-all Show documentation
Show all versions of cassandra-all Show documentation
The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.cassandra.utils.memory;
import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.Queue;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicLongFieldUpdater;
import com.google.common.annotations.VisibleForTesting;
import org.apache.cassandra.concurrent.InfiniteLoopExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import io.netty.util.concurrent.FastThreadLocal;
import org.apache.cassandra.config.DatabaseDescriptor;
import org.apache.cassandra.io.compress.BufferType;
import org.apache.cassandra.io.util.FileUtils;
import org.apache.cassandra.metrics.BufferPoolMetrics;
import org.apache.cassandra.utils.FBUtilities;
import org.apache.cassandra.utils.NoSpamLogger;
import org.apache.cassandra.utils.concurrent.Ref;
import static org.apache.cassandra.utils.ExecutorUtils.awaitTermination;
import static org.apache.cassandra.utils.ExecutorUtils.shutdownNow;
/**
* A pool of ByteBuffers that can be recycled.
*/
public class BufferPool
{
/** The size of a page aligned buffer, 64KiB */
public static final int CHUNK_SIZE = 64 << 10;
@VisibleForTesting
public static long MEMORY_USAGE_THRESHOLD = DatabaseDescriptor.getFileCacheSizeInMB() * 1024L * 1024L;
@VisibleForTesting
public static boolean ALLOCATE_ON_HEAP_WHEN_EXAHUSTED = DatabaseDescriptor.getBufferPoolUseHeapIfExhausted();
@VisibleForTesting
public static boolean DISABLED = Boolean.parseBoolean(System.getProperty("cassandra.test.disable_buffer_pool", "false"));
@VisibleForTesting
public static boolean DEBUG = false;
private static final Logger logger = LoggerFactory.getLogger(BufferPool.class);
private static final NoSpamLogger noSpamLogger = NoSpamLogger.getLogger(logger, 15L, TimeUnit.MINUTES);
private static final ByteBuffer EMPTY_BUFFER = ByteBuffer.allocateDirect(0);
/** A global pool of chunks (page aligned buffers) */
private static final GlobalPool globalPool = new GlobalPool();
/** A thread local pool of chunks, where chunks come from the global pool */
private static final FastThreadLocal localPool = new FastThreadLocal()
{
@Override
protected LocalPool initialValue()
{
return new LocalPool();
}
};
public static ByteBuffer get(int size)
{
if (DISABLED)
return allocate(size, ALLOCATE_ON_HEAP_WHEN_EXAHUSTED);
else
return takeFromPool(size, ALLOCATE_ON_HEAP_WHEN_EXAHUSTED);
}
public static ByteBuffer get(int size, BufferType bufferType)
{
boolean direct = bufferType == BufferType.OFF_HEAP;
if (DISABLED || !direct)
return allocate(size, !direct);
else
return takeFromPool(size, !direct);
}
/** Unlike the get methods, this will return null if the pool is exhausted */
public static ByteBuffer tryGet(int size)
{
if (DISABLED)
return allocate(size, ALLOCATE_ON_HEAP_WHEN_EXAHUSTED);
else
return maybeTakeFromPool(size, ALLOCATE_ON_HEAP_WHEN_EXAHUSTED);
}
private static ByteBuffer allocate(int size, boolean onHeap)
{
return onHeap
? ByteBuffer.allocate(size)
: ByteBuffer.allocateDirect(size);
}
private static ByteBuffer takeFromPool(int size, boolean allocateOnHeapWhenExhausted)
{
ByteBuffer ret = maybeTakeFromPool(size, allocateOnHeapWhenExhausted);
if (ret != null)
return ret;
if (logger.isTraceEnabled())
logger.trace("Requested buffer size {} has been allocated directly due to lack of capacity", FBUtilities.prettyPrintMemory(size));
return localPool.get().allocate(size, allocateOnHeapWhenExhausted);
}
private static ByteBuffer maybeTakeFromPool(int size, boolean allocateOnHeapWhenExhausted)
{
if (size < 0)
throw new IllegalArgumentException("Size must be positive (" + size + ")");
if (size == 0)
return EMPTY_BUFFER;
if (size > CHUNK_SIZE)
{
if (logger.isTraceEnabled())
logger.trace("Requested buffer size {} is bigger than {}, allocating directly",
FBUtilities.prettyPrintMemory(size),
FBUtilities.prettyPrintMemory(CHUNK_SIZE));
return localPool.get().allocate(size, allocateOnHeapWhenExhausted);
}
return localPool.get().get(size);
}
public static void put(ByteBuffer buffer)
{
if (!(DISABLED || buffer.hasArray()))
localPool.get().put(buffer);
}
/** This is not thread safe and should only be used for unit testing. */
@VisibleForTesting
static void reset()
{
localPool.get().reset();
globalPool.reset();
}
@VisibleForTesting
static Chunk currentChunk()
{
return localPool.get().chunks[0];
}
@VisibleForTesting
static int numChunks()
{
int ret = 0;
for (Chunk chunk : localPool.get().chunks)
{
if (chunk != null)
ret++;
}
return ret;
}
@VisibleForTesting
static void assertAllRecycled()
{
globalPool.debug.check();
}
/**
* Forces to recycle free local chunks back to the global pool.
* This is needed because if buffers were freed by a different thread than the one
* that allocated them, recycling might not have happened and the local pool may still own some
* fully empty chunks.
*/
@VisibleForTesting
static void releaseLocal()
{
localPool.get().release();
}
public static long sizeInBytes()
{
return globalPool.sizeInBytes();
}
static final class Debug
{
volatile long recycleRound = 0;
final Queue allChunks = new ConcurrentLinkedQueue<>();
void register(Chunk chunk)
{
allChunks.add(chunk);
}
void acquire(Chunk chunk)
{
chunk.lastAcquired = recycleRound;
}
void recycle(Chunk chunk)
{
chunk.lastRecycled = recycleRound;
}
void check()
{
for (Chunk chunk : allChunks)
assert chunk.lastRecycled >= chunk.lastAcquired;
// check is called by a single test thread, so no need for atomic here;
recycleRound++;
}
}
/**
* A queue of page aligned buffers, the chunks, which have been sliced from bigger chunks,
* the macro-chunks, also page aligned. Macro-chunks are allocated as long as we have not exceeded the
* memory maximum threshold, MEMORY_USAGE_THRESHOLD and are never released.
*
* This class is shared by multiple thread local pools and must be thread-safe.
*/
static final class GlobalPool
{
/** The size of a bigger chunk, 1-mbit, must be a multiple of CHUNK_SIZE */
static final int MACRO_CHUNK_SIZE = 1 << 20;
static
{
assert Integer.bitCount(CHUNK_SIZE) == 1; // must be a power of 2
assert Integer.bitCount(MACRO_CHUNK_SIZE) == 1; // must be a power of 2
assert MACRO_CHUNK_SIZE % CHUNK_SIZE == 0; // must be a multiple
if (DISABLED)
logger.info("Global buffer pool is disabled, allocating {}", ALLOCATE_ON_HEAP_WHEN_EXAHUSTED ? "on heap" : "off heap");
else
logger.info("Global buffer pool is enabled, when pool is exhausted (max is {}) it will allocate {}",
FBUtilities.prettyPrintMemory(MEMORY_USAGE_THRESHOLD),
ALLOCATE_ON_HEAP_WHEN_EXAHUSTED ? "on heap" : "off heap");
}
private final Debug debug = new Debug();
private final Queue macroChunks = new ConcurrentLinkedQueue<>();
// TODO (future): it would be preferable to use a CLStack to improve cache occupancy; it would also be preferable to use "CoreLocal" storage
private final Queue chunks = new ConcurrentLinkedQueue<>();
private final AtomicLong memoryUsage = new AtomicLong();
/** Return a chunk, the caller will take owership of the parent chunk. */
public Chunk get()
{
Chunk chunk = getInternal();
if (DEBUG && chunk != null)
debug.acquire(chunk);
return chunk;
}
private Chunk getInternal()
{
while (true)
{
Chunk chunk = chunks.poll();
if (chunk != null)
return chunk;
if (!allocateMoreChunks())
// give it one last attempt, in case someone else allocated before us
return chunks.poll();
}
}
/**
* This method might be called by multiple threads and that's fine if we add more
* than one chunk at the same time as long as we don't exceed the MEMORY_USAGE_THRESHOLD.
*/
private boolean allocateMoreChunks()
{
while (true)
{
long cur = memoryUsage.get();
if (cur + MACRO_CHUNK_SIZE > MEMORY_USAGE_THRESHOLD)
{
noSpamLogger.info("Maximum memory usage reached ({}), cannot allocate chunk of {}",
MEMORY_USAGE_THRESHOLD, MACRO_CHUNK_SIZE);
return false;
}
if (memoryUsage.compareAndSet(cur, cur + MACRO_CHUNK_SIZE))
break;
}
// allocate a large chunk
Chunk chunk;
try
{
chunk = new Chunk(allocateDirectAligned(MACRO_CHUNK_SIZE));
}
catch (OutOfMemoryError oom)
{
noSpamLogger.error("Buffer pool failed to allocate chunk of {}, current size {} ({}). " +
"Attempting to continue; buffers will be allocated in on-heap memory which can degrade performance. " +
"Make sure direct memory size (-XX:MaxDirectMemorySize) is large enough to accommodate off-heap memtables and caches.",
MACRO_CHUNK_SIZE, sizeInBytes(), oom.toString());
return false;
}
chunk.acquire(null);
macroChunks.add(chunk);
for (int i = 0 ; i < MACRO_CHUNK_SIZE ; i += CHUNK_SIZE)
{
Chunk add = new Chunk(chunk.get(CHUNK_SIZE));
chunks.add(add);
if (DEBUG)
debug.register(add);
}
return true;
}
public void recycle(Chunk chunk)
{
chunks.add(chunk);
}
public long sizeInBytes()
{
return memoryUsage.get();
}
/** This is not thread safe and should only be used for unit testing. */
@VisibleForTesting
void reset()
{
while (!chunks.isEmpty())
chunks.poll().reset();
while (!macroChunks.isEmpty())
macroChunks.poll().reset();
memoryUsage.set(0);
}
}
/**
* A thread local class that grabs chunks from the global pool for this thread allocations.
* Only one thread can do the allocations but multiple threads can release the allocations.
*/
static final class LocalPool
{
private final static BufferPoolMetrics metrics = new BufferPoolMetrics();
// a microqueue of Chunks:
// * if any are null, they are at the end;
// * new Chunks are added to the last null index
// * if no null indexes available, the smallest is swapped with the last index, and this replaced
// * this results in a queue that will typically be visited in ascending order of available space, so that
// small allocations preferentially slice from the Chunks with the smallest space available to furnish them
// WARNING: if we ever change the size of this, we must update removeFromLocalQueue, and addChunk
private final Chunk[] chunks = new Chunk[3];
private byte chunkCount = 0;
public LocalPool()
{
localPoolReferences.add(new LocalPoolRef(this, localPoolRefQueue));
}
private Chunk addChunkFromGlobalPool()
{
Chunk chunk = globalPool.get();
if (chunk == null)
return null;
addChunk(chunk);
return chunk;
}
private void addChunk(Chunk chunk)
{
chunk.acquire(this);
if (chunkCount < 3)
{
chunks[chunkCount++] = chunk;
return;
}
int smallestChunkIdx = 0;
if (chunks[1].free() < chunks[0].free())
smallestChunkIdx = 1;
if (chunks[2].free() < chunks[smallestChunkIdx].free())
smallestChunkIdx = 2;
chunks[smallestChunkIdx].release();
if (smallestChunkIdx != 2)
chunks[smallestChunkIdx] = chunks[2];
chunks[2] = chunk;
}
public ByteBuffer get(int size)
{
for (Chunk chunk : chunks)
{ // first see if our own chunks can serve this buffer
if (chunk == null)
break;
ByteBuffer buffer = chunk.get(size);
if (buffer != null)
return buffer;
}
// else ask the global pool
Chunk chunk = addChunkFromGlobalPool();
if (chunk != null)
return chunk.get(size);
return null;
}
private ByteBuffer allocate(int size, boolean onHeap)
{
metrics.misses.mark();
return BufferPool.allocate(size, onHeap);
}
public void put(ByteBuffer buffer)
{
Chunk chunk = Chunk.getParentChunk(buffer);
if (chunk == null)
{
FileUtils.clean(buffer);
return;
}
LocalPool owner = chunk.owner;
// ask the free method to take exclusive ownership of the act of recycling
// if we are either: already not owned by anyone, or owned by ourselves
long free = chunk.free(buffer, owner == null | owner == this);
if (free == 0L)
{
// 0L => we own recycling responsibility, so must recycle;
chunk.recycle();
// if we are also the owner, we must remove the Chunk from our local queue
if (owner == this)
removeFromLocalQueue(chunk);
}
else if (((free == -1L) && owner != this) && chunk.owner == null)
{
// although we try to take recycle ownership cheaply, it is not always possible to do so if the owner is racing to unset.
// we must also check after completely freeing if the owner has since been unset, and try to recycle
chunk.tryRecycle();
}
}
private void removeFromLocalQueue(Chunk chunk)
{
// since we only have three elements in the queue, it is clearer, easier and faster to just hard code the options
if (chunks[0] == chunk)
{ // remove first by shifting back second two
chunks[0] = chunks[1];
chunks[1] = chunks[2];
}
else if (chunks[1] == chunk)
{ // remove second by shifting back last
chunks[1] = chunks[2];
}
else assert chunks[2] == chunk;
// whatever we do, the last element myst be null
chunks[2] = null;
chunkCount--;
}
@VisibleForTesting
void reset()
{
chunkCount = 0;
for (int i = 0; i < chunks.length; i++)
{
if (chunks[i] != null)
{
chunks[i].owner = null;
chunks[i].freeSlots = 0L;
chunks[i].recycle();
chunks[i] = null;
}
}
}
@VisibleForTesting
void release()
{
chunkCount = 0;
for (int i = 0; i < chunks.length; i++)
{
if (chunks[i] != null)
{
chunks[i].release();
chunks[i] = null;
}
}
}
}
private static final class LocalPoolRef extends PhantomReference
{
private final Chunk[] chunks;
public LocalPoolRef(LocalPool localPool, ReferenceQueue super LocalPool> q)
{
super(localPool, q);
chunks = localPool.chunks;
}
public void release()
{
for (int i = 0 ; i < chunks.length ; i++)
{
if (chunks[i] != null)
{
chunks[i].release();
chunks[i] = null;
}
}
}
}
private static final ConcurrentLinkedQueue localPoolReferences = new ConcurrentLinkedQueue<>();
private static final ReferenceQueue
© 2015 - 2024 Weber Informatics LLC | Privacy Policy