All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.db.ClusteringPrefix Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.db;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.security.MessageDigest;
import java.util.*;

import org.apache.cassandra.cache.IMeasurableMemory;
import org.apache.cassandra.config.*;
import org.apache.cassandra.db.rows.*;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.io.util.DataInputPlus;
import org.apache.cassandra.io.util.DataOutputPlus;
import org.apache.cassandra.utils.ByteBufferUtil;

/**
 * A clustering prefix is the unit of what a {@link ClusteringComparator} can compare.
 * 

* It holds values for the clustering columns of a table (potentially only a prefix of all of them) and has * a "kind" that allows us to implement slices with inclusive and exclusive bounds. *

* In practice, {@code ClusteringPrefix} is just the common parts to its 3 main subtype: {@link Clustering} and * {@link ClusteringBound}/{@link ClusteringBoundary}, where: * 1) {@code Clustering} represents the clustering values for a row, i.e. the values for it's clustering columns. * 2) {@code ClusteringBound} represents a bound (start or end) of a slice (of rows) or a range tombstone. * 3) {@code ClusteringBoundary} represents the threshold between two adjacent range tombstones. * See those classes for more details. */ public interface ClusteringPrefix extends IMeasurableMemory, Clusterable { public static final Serializer serializer = new Serializer(); /** * The kind of clustering prefix this actually is. * * The kind {@code STATIC_CLUSTERING} is only implemented by {@link Clustering#STATIC_CLUSTERING} and {@code CLUSTERING} is * implemented by the {@link Clustering} class. The rest is used by {@link ClusteringBound} and {@link ClusteringBoundary}. */ public enum Kind { // WARNING: the ordering of that enum matters because we use ordinal() in the serialization EXCL_END_BOUND (0, -1), INCL_START_BOUND (0, -1), EXCL_END_INCL_START_BOUNDARY(0, -1), STATIC_CLUSTERING (1, -1), CLUSTERING (2, 0), INCL_END_EXCL_START_BOUNDARY(3, 1), INCL_END_BOUND (3, 1), EXCL_START_BOUND (3, 1); private final int comparison; /** * Return the comparison of this kind to CLUSTERING. * For bounds/boundaries, this basically tells us if we sort before or after our clustering values. */ public final int comparedToClustering; Kind(int comparison, int comparedToClustering) { this.comparison = comparison; this.comparedToClustering = comparedToClustering; } /** * Compares the 2 provided kind. *

* Note: this should be used instead of {@link #compareTo} when comparing clustering prefixes. We do * not override that latter method because it is final for an enum. */ public static int compare(Kind k1, Kind k2) { return Integer.compare(k1.comparison, k2.comparison); } /** * Returns the inverse of the current kind. *

* This invert both start into end (and vice-versa) and inclusive into exclusive (and vice-versa). * * @return the invert of this kind. For instance, if this kind is an exlusive start, this return * an inclusive end. */ public Kind invert() { switch (this) { case EXCL_START_BOUND: return INCL_END_BOUND; case INCL_START_BOUND: return EXCL_END_BOUND; case EXCL_END_BOUND: return INCL_START_BOUND; case INCL_END_BOUND: return EXCL_START_BOUND; case EXCL_END_INCL_START_BOUNDARY: return INCL_END_EXCL_START_BOUNDARY; case INCL_END_EXCL_START_BOUNDARY: return EXCL_END_INCL_START_BOUNDARY; default: return this; } } public boolean isBound() { switch (this) { case INCL_START_BOUND: case INCL_END_BOUND: case EXCL_START_BOUND: case EXCL_END_BOUND: return true; default: return false; } } public boolean isBoundary() { switch (this) { case INCL_END_EXCL_START_BOUNDARY: case EXCL_END_INCL_START_BOUNDARY: return true; default: return false; } } public boolean isStart() { switch (this) { case INCL_START_BOUND: case EXCL_END_INCL_START_BOUNDARY: case INCL_END_EXCL_START_BOUNDARY: case EXCL_START_BOUND: return true; default: return false; } } public boolean isEnd() { switch (this) { case INCL_END_BOUND: case EXCL_END_INCL_START_BOUNDARY: case INCL_END_EXCL_START_BOUNDARY: case EXCL_END_BOUND: return true; default: return false; } } public boolean isOpen(boolean reversed) { return isBoundary() || (reversed ? isEnd() : isStart()); } public boolean isClose(boolean reversed) { return isBoundary() || (reversed ? isStart() : isEnd()); } public Kind closeBoundOfBoundary(boolean reversed) { assert isBoundary(); return reversed ? (this == INCL_END_EXCL_START_BOUNDARY ? EXCL_START_BOUND : INCL_START_BOUND) : (this == INCL_END_EXCL_START_BOUNDARY ? INCL_END_BOUND : EXCL_END_BOUND); } public Kind openBoundOfBoundary(boolean reversed) { assert isBoundary(); return reversed ? (this == INCL_END_EXCL_START_BOUNDARY ? INCL_END_BOUND : EXCL_END_BOUND) : (this == INCL_END_EXCL_START_BOUNDARY ? EXCL_START_BOUND : INCL_START_BOUND); } } public Kind kind(); /** * The number of values in this prefix. * * There can't be more values that the this is a prefix of has of clustering columns. * * @return the number of values in this prefix. */ public int size(); /** * Retrieves the ith value of this prefix. * * @param i the index of the value to retrieve. Must be such that {@code 0 <= i < size()}. * * @return the ith value of this prefix. Note that a value can be {@code null}. */ public ByteBuffer get(int i); /** * Adds the data of this clustering prefix to the provided digest. * * @param digest the digest to which to add this prefix. */ public void digest(MessageDigest digest); /** * The size of the data hold by this prefix. * * @return the size of the data hold by this prefix (this is not the size of the object in memory, just * the size of the data it stores). */ public int dataSize(); /** * Generates a proper string representation of the prefix. * * @param metadata the metadata for the table the clustering prefix is of. * @return a human-readable string representation fo this prefix. */ public String toString(CFMetaData metadata); /** * The values of this prefix as an array. *

* Please note that this may or may not require an array creation. So 1) you should *not* * modify the returned array and 2) it's more efficient to use {@link #size()} and * {@link #get} unless you actually need an array. * * @return the values for this prefix as an array. */ public ByteBuffer[] getRawValues(); /** * If the prefix contains byte buffers that can be minimized (see {@link ByteBufferUtil#minimalBufferFor(ByteBuffer)}), * this will return a copy of the prefix with minimized values, otherwise it returns itself. */ public ClusteringPrefix minimize(); public static class Serializer { public void serialize(ClusteringPrefix clustering, DataOutputPlus out, int version, List> types) throws IOException { // We shouldn't serialize static clusterings assert clustering.kind() != Kind.STATIC_CLUSTERING; if (clustering.kind() == Kind.CLUSTERING) { out.writeByte(clustering.kind().ordinal()); Clustering.serializer.serialize((Clustering)clustering, out, version, types); } else { ClusteringBoundOrBoundary.serializer.serialize((ClusteringBoundOrBoundary)clustering, out, version, types); } } public void skip(DataInputPlus in, int version, List> types) throws IOException { Kind kind = Kind.values()[in.readByte()]; // We shouldn't serialize static clusterings assert kind != Kind.STATIC_CLUSTERING; if (kind == Kind.CLUSTERING) Clustering.serializer.skip(in, version, types); else ClusteringBoundOrBoundary.serializer.skipValues(in, kind, version, types); } public ClusteringPrefix deserialize(DataInputPlus in, int version, List> types) throws IOException { Kind kind = Kind.values()[in.readByte()]; // We shouldn't serialize static clusterings assert kind != Kind.STATIC_CLUSTERING; if (kind == Kind.CLUSTERING) return Clustering.serializer.deserialize(in, version, types); else return ClusteringBoundOrBoundary.serializer.deserializeValues(in, kind, version, types); } public long serializedSize(ClusteringPrefix clustering, int version, List> types) { // We shouldn't serialize static clusterings assert clustering.kind() != Kind.STATIC_CLUSTERING; if (clustering.kind() == Kind.CLUSTERING) return 1 + Clustering.serializer.serializedSize((Clustering)clustering, version, types); else return ClusteringBoundOrBoundary.serializer.serializedSize((ClusteringBoundOrBoundary)clustering, version, types); } void serializeValuesWithoutSize(ClusteringPrefix clustering, DataOutputPlus out, int version, List> types) throws IOException { int offset = 0; int clusteringSize = clustering.size(); // serialize in batches of 32, to avoid garbage when deserializing headers while (offset < clusteringSize) { // we micro-batch the headers, so that we can incur fewer method calls, // and generate no garbage on deserialization; // we piggyback on vint encoding so that, typically, only 1 byte is used per 32 clustering values, // i.e. more than we ever expect to see int limit = Math.min(clusteringSize, offset + 32); out.writeUnsignedVInt(makeHeader(clustering, offset, limit)); while (offset < limit) { ByteBuffer v = clustering.get(offset); if (v != null && v.hasRemaining()) types.get(offset).writeValue(v, out); offset++; } } } long valuesWithoutSizeSerializedSize(ClusteringPrefix clustering, int version, List> types) { long result = 0; int offset = 0; int clusteringSize = clustering.size(); while (offset < clusteringSize) { int limit = Math.min(clusteringSize, offset + 32); result += TypeSizes.sizeofUnsignedVInt(makeHeader(clustering, offset, limit)); offset = limit; } for (int i = 0; i < clusteringSize; i++) { ByteBuffer v = clustering.get(i); if (v == null || !v.hasRemaining()) continue; // handled in the header result += types.get(i).writtenLength(v); } return result; } ByteBuffer[] deserializeValuesWithoutSize(DataInputPlus in, int size, int version, List> types) throws IOException { // Callers of this method should handle the case where size = 0 (in all case we want to return a special value anyway). assert size > 0; ByteBuffer[] values = new ByteBuffer[size]; int offset = 0; while (offset < size) { long header = in.readUnsignedVInt(); int limit = Math.min(size, offset + 32); while (offset < limit) { values[offset] = isNull(header, offset) ? null : (isEmpty(header, offset) ? ByteBufferUtil.EMPTY_BYTE_BUFFER : types.get(offset).readValue(in, DatabaseDescriptor.getMaxValueSize())); offset++; } } return values; } void skipValuesWithoutSize(DataInputPlus in, int size, int version, List> types) throws IOException { // Callers of this method should handle the case where size = 0 (in all case we want to return a special value anyway). assert size > 0; int offset = 0; while (offset < size) { long header = in.readUnsignedVInt(); int limit = Math.min(size, offset + 32); while (offset < limit) { if (!isNull(header, offset) && !isEmpty(header, offset)) types.get(offset).skipValue(in); offset++; } } } /** * Whatever the type of a given clustering column is, its value can always be either empty or null. So we at least need to distinguish those * 2 values, and because we want to be able to store fixed width values without appending their (fixed) size first, we need a way to encode * empty values too. So for that, every clustering prefix includes a "header" that contains 2 bits per element in the prefix. For each element, * those 2 bits encode whether the element is null, empty, or none of those. */ private static long makeHeader(ClusteringPrefix clustering, int offset, int limit) { long header = 0; for (int i = offset ; i < limit ; i++) { ByteBuffer v = clustering.get(i); // no need to do modulo arithmetic for i, since the left-shift execute on the modulus of RH operand by definition if (v == null) header |= (1L << (i * 2) + 1); else if (!v.hasRemaining()) header |= (1L << (i * 2)); } return header; } // no need to do modulo arithmetic for i, since the left-shift execute on the modulus of RH operand by definition private static boolean isNull(long header, int i) { long mask = 1L << (i * 2) + 1; return (header & mask) != 0; } // no need to do modulo arithmetic for i, since the left-shift execute on the modulus of RH operand by definition private static boolean isEmpty(long header, int i) { long mask = 1L << (i * 2); return (header & mask) != 0; } } /** * Helper class that makes the deserialization of clustering prefixes faster. *

* The main reason for this is that when we deserialize rows from sstables, there is many cases where we have * a bunch of rows to skip at the beginning of an index block because those rows are before the requested slice. * This class make sure we can answer the question "is the next row on disk before the requested slice" with as * little work as possible. It does that by providing a comparison method that deserialize only what is needed * to decide of the comparison. */ public static class Deserializer { private final ClusteringComparator comparator; private final DataInputPlus in; private final SerializationHeader serializationHeader; private boolean nextIsRow; private long nextHeader; private int nextSize; private ClusteringPrefix.Kind nextKind; private int deserializedSize; private ByteBuffer[] nextValues; public Deserializer(ClusteringComparator comparator, DataInputPlus in, SerializationHeader header) { this.comparator = comparator; this.in = in; this.serializationHeader = header; } public void prepare(int flags, int extendedFlags) throws IOException { if (UnfilteredSerializer.isStatic(extendedFlags)) throw new IOException("Corrupt flags value for clustering prefix (isStatic flag set): " + flags); this.nextIsRow = UnfilteredSerializer.kind(flags) == Unfiltered.Kind.ROW; this.nextKind = nextIsRow ? Kind.CLUSTERING : ClusteringPrefix.Kind.values()[in.readByte()]; this.nextSize = nextIsRow ? comparator.size() : in.readUnsignedShort(); this.deserializedSize = 0; // The point of the deserializer is that some of the clustering prefix won't actually be used (because they are not // within the bounds of the query), and we want to reduce allocation for them. So we only reuse the values array // between elements if 1) we haven't returned the previous element (if we have, nextValues will be null) and 2) // nextValues is of the proper size. Note that the 2nd condition may not hold for range tombstone bounds, but all // rows have a fixed size clustering, so we'll still save in the common case. if (nextValues == null || nextValues.length != nextSize) this.nextValues = new ByteBuffer[nextSize]; } public int compareNextTo(ClusteringBoundOrBoundary bound) throws IOException { if (bound == ClusteringBound.TOP) return -1; for (int i = 0; i < bound.size(); i++) { if (!hasComponent(i)) return nextKind.comparedToClustering; int cmp = comparator.compareComponent(i, nextValues[i], bound.get(i)); if (cmp != 0) return cmp; } if (bound.size() == nextSize) return Kind.compare(nextKind, bound.kind()); // We know that we'll have exited already if nextSize < bound.size return -bound.kind().comparedToClustering; } private boolean hasComponent(int i) throws IOException { if (i >= nextSize) return false; while (deserializedSize <= i) deserializeOne(); return true; } private boolean deserializeOne() throws IOException { if (deserializedSize == nextSize) return false; if ((deserializedSize % 32) == 0) nextHeader = in.readUnsignedVInt(); int i = deserializedSize++; nextValues[i] = Serializer.isNull(nextHeader, i) ? null : (Serializer.isEmpty(nextHeader, i) ? ByteBufferUtil.EMPTY_BYTE_BUFFER : serializationHeader.clusteringTypes().get(i).readValue(in, DatabaseDescriptor.getMaxValueSize())); return true; } private void deserializeAll() throws IOException { while (deserializeOne()) continue; } public ClusteringBoundOrBoundary deserializeNextBound() throws IOException { assert !nextIsRow; deserializeAll(); ClusteringBoundOrBoundary bound = ClusteringBoundOrBoundary.create(nextKind, nextValues); nextValues = null; return bound; } public Clustering deserializeNextClustering() throws IOException { assert nextIsRow; deserializeAll(); Clustering clustering = Clustering.make(nextValues); nextValues = null; return clustering; } public ClusteringPrefix.Kind skipNext() throws IOException { for (int i = deserializedSize; i < nextSize; i++) { if ((i % 32) == 0) nextHeader = in.readUnsignedVInt(); if (!Serializer.isNull(nextHeader, i) && !Serializer.isEmpty(nextHeader, i)) serializationHeader.clusteringTypes().get(i).skipValue(in); } deserializedSize = nextSize; return nextKind; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy