All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.db.view.ViewUpdateGenerator Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.db.view;

import java.nio.ByteBuffer;
import java.util.*;

import com.google.common.collect.Iterators;
import com.google.common.collect.PeekingIterator;

import org.apache.cassandra.config.CFMetaData;
import org.apache.cassandra.config.ColumnDefinition;
import org.apache.cassandra.db.*;
import org.apache.cassandra.db.rows.*;
import org.apache.cassandra.db.partitions.*;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.db.marshal.CompositeType;

/**
 * Creates the updates to apply to a view given the existing rows in the base
 * table and the updates that we're applying to them (this handles updates
 * on a single partition only).
 *
 * This class is used by passing the updates made to the base table to
 * {@link #addBaseTableUpdate} and calling {@link #generateViewUpdates} once all updates have
 * been handled to get the resulting view mutations.
 */
public class ViewUpdateGenerator
{
    private final View view;
    private final int nowInSec;

    private final CFMetaData baseMetadata;
    private final DecoratedKey baseDecoratedKey;
    private final ByteBuffer[] basePartitionKey;

    private final CFMetaData viewMetadata;
    private final boolean baseEnforceStrictLiveness;

    private final Map updates = new HashMap<>();

    // Reused internally to build a new entry
    private final ByteBuffer[] currentViewEntryPartitionKey;
    private final Row.Builder currentViewEntryBuilder;

    /**
     * The type of type update action to perform to the view for a given base table
     * update.
     */
    private enum UpdateAction
    {
        NONE,            // There was no view entry and none should be added
        NEW_ENTRY,       // There was no entry but there is one post-update
        DELETE_OLD,      // There was an entry but there is nothing after update
        UPDATE_EXISTING, // There was an entry and the update modifies it
        SWITCH_ENTRY     // There was an entry and there is still one after update,
                         // but they are not the same one.
    }

    /**
     * Creates a new {@code ViewUpdateBuilder}.
     *
     * @param view the view for which this will be building updates for.
     * @param basePartitionKey the partition key for the base table partition for which
     * we'll handle updates for.
     * @param nowInSec the current time in seconds. Used to decide if data are live or not
     * and as base reference for new deletions.
     */
    public ViewUpdateGenerator(View view, DecoratedKey basePartitionKey, int nowInSec)
    {
        this.view = view;
        this.nowInSec = nowInSec;

        this.baseMetadata = view.getDefinition().baseTableMetadata();
        this.baseEnforceStrictLiveness = baseMetadata.enforceStrictLiveness();
        this.baseDecoratedKey = basePartitionKey;
        this.basePartitionKey = extractKeyComponents(basePartitionKey, baseMetadata.getKeyValidator());

        this.viewMetadata = view.getDefinition().metadata;

        this.currentViewEntryPartitionKey = new ByteBuffer[viewMetadata.partitionKeyColumns().size()];
        this.currentViewEntryBuilder = BTreeRow.sortedBuilder();
    }

    private static ByteBuffer[] extractKeyComponents(DecoratedKey partitionKey, AbstractType type)
    {
        return type instanceof CompositeType
             ? ((CompositeType)type).split(partitionKey.getKey())
             : new ByteBuffer[]{ partitionKey.getKey() };
    }

    /**
     * Adds to this generator the updates to be made to the view given a base table row
     * before and after an update.
     *
     * @param existingBaseRow the base table row as it is before an update.
     * @param mergedBaseRow the base table row after the update is applied (note that
     * this is not just the new update, but rather the resulting row).
     */
    public void addBaseTableUpdate(Row existingBaseRow, Row mergedBaseRow)
    {
        switch (updateAction(existingBaseRow, mergedBaseRow))
        {
            case NONE:
                return;
            case NEW_ENTRY:
                createEntry(mergedBaseRow);
                return;
            case DELETE_OLD:
                deleteOldEntry(existingBaseRow, mergedBaseRow);
                return;
            case UPDATE_EXISTING:
                updateEntry(existingBaseRow, mergedBaseRow);
                return;
            case SWITCH_ENTRY:
                createEntry(mergedBaseRow);
                deleteOldEntry(existingBaseRow, mergedBaseRow);
                return;
        }
    }

    /**
     * Returns the updates that needs to be done to the view given the base table updates
     * passed to {@link #addBaseTableUpdate}.
     *
     * @return the updates to do to the view.
     */
    public Collection generateViewUpdates()
    {
        return updates.values();
    }

    /**
     * Clears the current state so that the generator may be reused.
     */
    public void clear()
    {
        updates.clear();
    }

    /**
     * Compute which type of action needs to be performed to the view for a base table row
     * before and after an update.
     */
    private UpdateAction updateAction(Row existingBaseRow, Row mergedBaseRow)
    {
        // Having existing empty is useful, it just means we'll insert a brand new entry for mergedBaseRow,
        // but if we have no update at all, we shouldn't get there.
        assert !mergedBaseRow.isEmpty();

        // Note that none of the base PK columns will differ since we're intrinsically dealing
        // with the same base row. So we have to check 3 things:
        //   1) that the clustering doesn't have a null, which can happen for compact tables. If that's the case,
        //      there is no corresponding entries.
        //   2) if there is a column not part of the base PK in the view PK, whether it is changed by the update.
        //   3) whether mergedBaseRow actually match the view SELECT filter

        if (baseMetadata.isCompactTable())
        {
            Clustering clustering = mergedBaseRow.clustering();
            for (int i = 0; i < clustering.size(); i++)
            {
                if (clustering.get(i) == null)
                    return UpdateAction.NONE;
            }
        }

        assert view.baseNonPKColumnsInViewPK.size() <= 1 : "We currently only support one base non-PK column in the view PK";

        if (view.baseNonPKColumnsInViewPK.isEmpty())
        {
            // The view entry is necessarily the same pre and post update.

            // Note that we allow existingBaseRow to be null and treat it as empty (see MultiViewUpdateBuilder.generateViewsMutations).
            boolean existingHasLiveData = existingBaseRow != null && existingBaseRow.hasLiveData(nowInSec, baseEnforceStrictLiveness);
            boolean mergedHasLiveData = mergedBaseRow.hasLiveData(nowInSec, baseEnforceStrictLiveness);
            return existingHasLiveData
                 ? (mergedHasLiveData ? UpdateAction.UPDATE_EXISTING : UpdateAction.DELETE_OLD)
                 : (mergedHasLiveData ? UpdateAction.NEW_ENTRY : UpdateAction.NONE);
        }

        ColumnDefinition baseColumn = view.baseNonPKColumnsInViewPK.get(0);
        assert !baseColumn.isComplex() : "A complex column couldn't be part of the view PK";
        Cell before = existingBaseRow == null ? null : existingBaseRow.getCell(baseColumn);
        Cell after = mergedBaseRow.getCell(baseColumn);

        // If the update didn't modified this column, the cells will be the same object so it's worth checking
        if (before == after)
            return isLive(before) ? UpdateAction.UPDATE_EXISTING : UpdateAction.NONE;

        if (!isLive(before))
            return isLive(after) ? UpdateAction.NEW_ENTRY : UpdateAction.NONE;
        if (!isLive(after))
        {
            return UpdateAction.DELETE_OLD;
        }

        return baseColumn.cellValueType().compare(before.value(), after.value()) == 0
             ? UpdateAction.UPDATE_EXISTING
             : UpdateAction.SWITCH_ENTRY;
    }

    private boolean matchesViewFilter(Row baseRow)
    {
        return view.matchesViewFilter(baseDecoratedKey, baseRow, nowInSec);
    }

    private boolean isLive(Cell cell)
    {
        return cell != null && cell.isLive(nowInSec);
    }

    /**
     * Creates a view entry corresponding to the provided base row.
     * 

* This method checks that the base row does match the view filter before applying it. */ private void createEntry(Row baseRow) { // Before create a new entry, make sure it matches the view filter if (!matchesViewFilter(baseRow)) return; startNewUpdate(baseRow); currentViewEntryBuilder.addPrimaryKeyLivenessInfo(computeLivenessInfoForEntry(baseRow)); currentViewEntryBuilder.addRowDeletion(baseRow.deletion()); for (ColumnData data : baseRow) { ColumnDefinition viewColumn = view.getViewColumn(data.column()); // If that base table column is not denormalized in the view, we had nothing to do. // Alose, if it's part of the view PK it's already been taken into account in the clustering. if (viewColumn == null || viewColumn.isPrimaryKeyColumn()) continue; addColumnData(viewColumn, data); } submitUpdate(); } /** * Creates the updates to apply to the existing view entry given the base table row before * and after the update, assuming that the update hasn't changed to which view entry the * row correspond (that is, we know the columns composing the view PK haven't changed). *

* This method checks that the base row (before and after) does match the view filter before * applying anything. */ private void updateEntry(Row existingBaseRow, Row mergedBaseRow) { // While we know existingBaseRow and mergedBaseRow are corresponding to the same view entry, // they may not match the view filter. if (!matchesViewFilter(existingBaseRow)) { createEntry(mergedBaseRow); return; } if (!matchesViewFilter(mergedBaseRow)) { deleteOldEntryInternal(existingBaseRow, mergedBaseRow); return; } startNewUpdate(mergedBaseRow); // In theory, it may be the PK liveness and row deletion hasn't been change by the update // and we could condition the 2 additions below. In practice though, it's as fast (if not // faster) to compute those info than to check if they have changed so we keep it simple. currentViewEntryBuilder.addPrimaryKeyLivenessInfo(computeLivenessInfoForEntry(mergedBaseRow)); currentViewEntryBuilder.addRowDeletion(mergedBaseRow.deletion()); addDifferentCells(existingBaseRow, mergedBaseRow); submitUpdate(); } private void addDifferentCells(Row existingBaseRow, Row mergedBaseRow) { // We only add to the view update the cells from mergedBaseRow that differs from // existingBaseRow. For that and for speed we can just cell pointer equality: if the update // hasn't touched a cell, we know it will be the same object in existingBaseRow and // mergedBaseRow (note that including more cells than we strictly should isn't a problem // for correction, so even if the code change and pointer equality don't work anymore, it'll // only a slightly inefficiency which we can fix then). // Note: we could alternatively use Rows.diff() for this, but because it is a bit more generic // than what we need here, it's also a bit less efficient (it allocates more in particular), // and this might be called a lot of time for view updates. So, given that this is not a whole // lot of code anyway, it's probably doing the diff manually. PeekingIterator existingIter = Iterators.peekingIterator(existingBaseRow.iterator()); for (ColumnData mergedData : mergedBaseRow) { ColumnDefinition baseColumn = mergedData.column(); ColumnDefinition viewColumn = view.getViewColumn(baseColumn); // If that base table column is not denormalized in the view, we had nothing to do. // Alose, if it's part of the view PK it's already been taken into account in the clustering. if (viewColumn == null || viewColumn.isPrimaryKeyColumn()) continue; ColumnData existingData = null; // Find if there is data for that column in the existing row while (existingIter.hasNext()) { int cmp = baseColumn.compareTo(existingIter.peek().column()); if (cmp < 0) break; ColumnData next = existingIter.next(); if (cmp == 0) { existingData = next; break; } } if (existingData == null) { addColumnData(viewColumn, mergedData); continue; } if (mergedData == existingData) continue; if (baseColumn.isComplex()) { ComplexColumnData mergedComplexData = (ComplexColumnData)mergedData; ComplexColumnData existingComplexData = (ComplexColumnData)existingData; if (mergedComplexData.complexDeletion().supersedes(existingComplexData.complexDeletion())) currentViewEntryBuilder.addComplexDeletion(viewColumn, mergedComplexData.complexDeletion()); PeekingIterator existingCells = Iterators.peekingIterator(existingComplexData.iterator()); for (Cell mergedCell : mergedComplexData) { Cell existingCell = null; // Find if there is corresponding cell in the existing row while (existingCells.hasNext()) { int cmp = baseColumn.cellPathComparator().compare(mergedCell.path(), existingCells.peek().path()); if (cmp > 0) break; Cell next = existingCells.next(); if (cmp == 0) { existingCell = next; break; } } if (mergedCell != existingCell) addCell(viewColumn, mergedCell); } } else { // Note that we've already eliminated the case where merged == existing addCell(viewColumn, (Cell)mergedData); } } } /** * Deletes the view entry corresponding to the provided base row. *

* This method checks that the base row does match the view filter before bothering. */ private void deleteOldEntry(Row existingBaseRow, Row mergedBaseRow) { // Before deleting an old entry, make sure it was matching the view filter (otherwise there is nothing to delete) if (!matchesViewFilter(existingBaseRow)) return; deleteOldEntryInternal(existingBaseRow, mergedBaseRow); } private void deleteOldEntryInternal(Row existingBaseRow, Row mergedBaseRow) { startNewUpdate(existingBaseRow); long timestamp = computeTimestampForEntryDeletion(existingBaseRow, mergedBaseRow); long rowDeletion = mergedBaseRow.deletion().time().markedForDeleteAt(); assert timestamp >= rowDeletion; // If computed deletion timestamp greater than row deletion, it must be coming from // 1. non-pk base column used in view pk, or // 2. unselected base column // any case, we need to use it as expired livenessInfo // If computed deletion timestamp is from row deletion, we only need row deletion itself if (timestamp > rowDeletion) { /** * We use an expired liveness instead of a row tombstone to allow a shadowed MV * entry to co-exist with a row tombstone, see ViewComplexTest#testCommutativeRowDeletion. * * TODO This is a dirty overload of LivenessInfo and we should modify * the storage engine to properly support this on CASSANDRA-13826. */ LivenessInfo info = LivenessInfo.withExpirationTime(timestamp, LivenessInfo.EXPIRED_LIVENESS_TTL, nowInSec); currentViewEntryBuilder.addPrimaryKeyLivenessInfo(info); } currentViewEntryBuilder.addRowDeletion(mergedBaseRow.deletion()); addDifferentCells(existingBaseRow, mergedBaseRow); submitUpdate(); } /** * Computes the partition key and clustering for a new view entry, and setup the internal * row builder for the new row. * * This assumes that there is corresponding entry, i.e. no values for the partition key and * clustering are null (since we have eliminated that case through updateAction). */ private void startNewUpdate(Row baseRow) { ByteBuffer[] clusteringValues = new ByteBuffer[viewMetadata.clusteringColumns().size()]; for (ColumnDefinition viewColumn : viewMetadata.primaryKeyColumns()) { ColumnDefinition baseColumn = view.getBaseColumn(viewColumn); ByteBuffer value = getValueForPK(baseColumn, baseRow); if (viewColumn.isPartitionKey()) currentViewEntryPartitionKey[viewColumn.position()] = value; else clusteringValues[viewColumn.position()] = value; } currentViewEntryBuilder.newRow(Clustering.make(clusteringValues)); } private LivenessInfo computeLivenessInfoForEntry(Row baseRow) { /** * There 3 cases: * 1. No extra primary key in view and all base columns are selected in MV. all base row's components(livenessInfo, * deletion, cells) are same as view row. Simply map base components to view row. * 2. There is a base non-key column used in view pk. This base non-key column determines the liveness of view row. view's row level * info should based on this column. * 3. Most tricky case is no extra primary key in view and some base columns are not selected in MV. We cannot use 1 livenessInfo or * row deletion to represent the liveness of unselected column properly, see CASSANDRA-11500. * We could make some simplification: the unselected columns will be used only when it affects view row liveness. eg. if view row * already exists and not expiring, there is no need to use unselected columns. * Note: if the view row is removed due to unselected column removal(ttl or cell tombstone), we will have problem keeping view * row alive with a smaller or equal timestamp than the max unselected column timestamp. * */ assert view.baseNonPKColumnsInViewPK.size() <= 1; // This may change, but is currently an enforced limitation LivenessInfo baseLiveness = baseRow.primaryKeyLivenessInfo(); if (view.hasSamePrimaryKeyColumnsAsBaseTable()) { if (view.getDefinition().includeAllColumns) return baseLiveness; long timestamp = baseLiveness.timestamp(); boolean hasNonExpiringLiveCell = false; Cell biggestExpirationCell = null; for (Cell cell : baseRow.cells()) { if (view.getViewColumn(cell.column()) != null) continue; if (!isLive(cell)) continue; timestamp = Math.max(timestamp, cell.maxTimestamp()); if (!cell.isExpiring()) hasNonExpiringLiveCell = true; else { if (biggestExpirationCell == null) biggestExpirationCell = cell; else if (cell.localDeletionTime() > biggestExpirationCell.localDeletionTime()) biggestExpirationCell = cell; } } if (baseLiveness.isLive(nowInSec) && !baseLiveness.isExpiring()) return LivenessInfo.create(timestamp, nowInSec); if (hasNonExpiringLiveCell) return LivenessInfo.create(timestamp, nowInSec); if (biggestExpirationCell == null) return baseLiveness; if (biggestExpirationCell.localDeletionTime() > baseLiveness.localExpirationTime() || !baseLiveness.isLive(nowInSec)) return LivenessInfo.withExpirationTime(timestamp, biggestExpirationCell.ttl(), biggestExpirationCell.localDeletionTime()); return baseLiveness; } Cell cell = baseRow.getCell(view.baseNonPKColumnsInViewPK.get(0)); assert isLive(cell) : "We shouldn't have got there if the base row had no associated entry"; return LivenessInfo.withExpirationTime(cell.timestamp(), cell.ttl(), cell.localDeletionTime()); } private long computeTimestampForEntryDeletion(Row existingBaseRow, Row mergedBaseRow) { DeletionTime deletion = mergedBaseRow.deletion().time(); if (view.hasSamePrimaryKeyColumnsAsBaseTable()) { long timestamp = Math.max(deletion.markedForDeleteAt(), existingBaseRow.primaryKeyLivenessInfo().timestamp()); if (view.getDefinition().includeAllColumns) return timestamp; for (Cell cell : existingBaseRow.cells()) { // selected column should not contribute to view deletion, itself is already included in view row if (view.getViewColumn(cell.column()) != null) continue; // unselected column is used regardless live or dead, because we don't know if it was used for liveness. timestamp = Math.max(timestamp, cell.maxTimestamp()); } return timestamp; } // has base non-pk column in view pk Cell before = existingBaseRow.getCell(view.baseNonPKColumnsInViewPK.get(0)); assert isLive(before) : "We shouldn't have got there if the base row had no associated entry"; return deletion.deletes(before) ? deletion.markedForDeleteAt() : before.timestamp(); } private void addColumnData(ColumnDefinition viewColumn, ColumnData baseTableData) { assert viewColumn.isComplex() == baseTableData.column().isComplex(); if (!viewColumn.isComplex()) { addCell(viewColumn, (Cell)baseTableData); return; } ComplexColumnData complexData = (ComplexColumnData)baseTableData; currentViewEntryBuilder.addComplexDeletion(viewColumn, complexData.complexDeletion()); for (Cell cell : complexData) addCell(viewColumn, cell); } private void addCell(ColumnDefinition viewColumn, Cell baseTableCell) { assert !viewColumn.isPrimaryKeyColumn(); currentViewEntryBuilder.addCell(baseTableCell.withUpdatedColumn(viewColumn)); } /** * Finish building the currently updated view entry and add it to the other built * updates. */ private void submitUpdate() { Row row = currentViewEntryBuilder.build(); // I'm not sure we can reach there is there is nothing is updated, but adding an empty row breaks things // and it costs us nothing to be prudent here. if (row.isEmpty()) return; DecoratedKey partitionKey = makeCurrentPartitionKey(); PartitionUpdate update = updates.get(partitionKey); if (update == null) { // We can't really know which columns of the view will be updated nor how many row will be updated for this key // so we rely on hopefully sane defaults. update = new PartitionUpdate(viewMetadata, partitionKey, viewMetadata.partitionColumns(), 4); updates.put(partitionKey, update); } update.add(row); } private DecoratedKey makeCurrentPartitionKey() { ByteBuffer rawKey = viewMetadata.partitionKeyColumns().size() == 1 ? currentViewEntryPartitionKey[0] : CompositeType.build(currentViewEntryPartitionKey); return viewMetadata.decorateKey(rawKey); } private ByteBuffer getValueForPK(ColumnDefinition column, Row row) { switch (column.kind) { case PARTITION_KEY: return basePartitionKey[column.position()]; case CLUSTERING: return row.clustering().get(column.position()); default: // This shouldn't NPE as we shouldn't get there if the value can be null (or there is a bug in updateAction()) return row.getCell(column).value(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy