All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.hadoop.cql3.CqlInputFormat Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.hadoop.cql3;

import java.io.IOException;
import java.util.*;
import java.util.concurrent.*;

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.Host;
import com.datastax.driver.core.Metadata;
import com.datastax.driver.core.ResultSet;
import com.datastax.driver.core.Row;
import com.datastax.driver.core.Session;
import com.datastax.driver.core.TokenRange;

import org.apache.cassandra.config.SchemaConstants;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.TaskAttemptID;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.cassandra.db.SystemKeyspace;
import org.apache.cassandra.dht.*;
import org.apache.cassandra.thrift.KeyRange;
import org.apache.cassandra.hadoop.*;

import static java.util.stream.Collectors.toMap;

/**
 * Hadoop InputFormat allowing map/reduce against Cassandra rows within one ColumnFamily.
 *
 * At minimum, you need to set the KS and CF in your Hadoop job Configuration.  
 * The ConfigHelper class is provided to make this
 * simple:
 *   ConfigHelper.setInputColumnFamily
 *
 * You can also configure the number of rows per InputSplit with
 *   1: ConfigHelper.setInputSplitSize. The default split size is 64k rows.
 *   or
 *   2: ConfigHelper.setInputSplitSizeInMb. InputSplit size in MB with new, more precise method
 *   If no value is provided for InputSplitSizeInMb, we default to using InputSplitSize.
 *
 *   CQLConfigHelper.setInputCQLPageRowSize. The default page row size is 1000. You
 *   should set it to "as big as possible, but no bigger." It set the LIMIT for the CQL 
 *   query, so you need set it big enough to minimize the network overhead, and also
 *   not too big to avoid out of memory issue.
 *   
 *   other native protocol connection parameters in CqlConfigHelper
 */
public class CqlInputFormat extends org.apache.hadoop.mapreduce.InputFormat implements org.apache.hadoop.mapred.InputFormat
{
    public static final String MAPRED_TASK_ID = "mapred.task.id";
    private static final Logger logger = LoggerFactory.getLogger(CqlInputFormat.class);
    private String keyspace;
    private String cfName;
    private IPartitioner partitioner;

    public RecordReader getRecordReader(InputSplit split, JobConf jobConf, final Reporter reporter)
            throws IOException
    {
        TaskAttemptContext tac = HadoopCompat.newMapContext(
                jobConf,
                TaskAttemptID.forName(jobConf.get(MAPRED_TASK_ID)),
                null,
                null,
                null,
                new ReporterWrapper(reporter),
                null);


        CqlRecordReader recordReader = new CqlRecordReader();
        recordReader.initialize((org.apache.hadoop.mapreduce.InputSplit)split, tac);
        return recordReader;
    }

    @Override
    public org.apache.hadoop.mapreduce.RecordReader createRecordReader(
            org.apache.hadoop.mapreduce.InputSplit arg0, TaskAttemptContext arg1) throws IOException,
            InterruptedException
    {
        return new CqlRecordReader();
    }

    protected void validateConfiguration(Configuration conf)
    {
        if (ConfigHelper.getInputKeyspace(conf) == null || ConfigHelper.getInputColumnFamily(conf) == null)
        {
            throw new UnsupportedOperationException("you must set the keyspace and table with setInputColumnFamily()");
        }
        if (ConfigHelper.getInputInitialAddress(conf) == null)
            throw new UnsupportedOperationException("You must set the initial output address to a Cassandra node with setInputInitialAddress");
        if (ConfigHelper.getInputPartitioner(conf) == null)
            throw new UnsupportedOperationException("You must set the Cassandra partitioner class with setInputPartitioner");
    }

    public List getSplits(JobContext context) throws IOException
    {
        Configuration conf = HadoopCompat.getConfiguration(context);

        validateConfiguration(conf);

        keyspace = ConfigHelper.getInputKeyspace(conf);
        cfName = ConfigHelper.getInputColumnFamily(conf);
        partitioner = ConfigHelper.getInputPartitioner(conf);
        logger.trace("partitioner is {}", partitioner);

        // canonical ranges, split into pieces, fetching the splits in parallel
        ExecutorService executor = new ThreadPoolExecutor(0, 128, 60L, TimeUnit.SECONDS, new LinkedBlockingQueue());
        List splits = new ArrayList<>();

        try (Cluster cluster = CqlConfigHelper.getInputCluster(ConfigHelper.getInputInitialAddress(conf).split(","), conf);
             Session session = cluster.connect())
        {
            List>> splitfutures = new ArrayList<>();
            KeyRange jobKeyRange = ConfigHelper.getInputKeyRange(conf);
            Range jobRange = null;
            if (jobKeyRange != null)
            {
                if (jobKeyRange.start_key != null)
                {
                    if (!partitioner.preservesOrder())
                        throw new UnsupportedOperationException("KeyRange based on keys can only be used with a order preserving partitioner");
                    if (jobKeyRange.start_token != null)
                        throw new IllegalArgumentException("only start_key supported");
                    if (jobKeyRange.end_token != null)
                        throw new IllegalArgumentException("only start_key supported");
                    jobRange = new Range<>(partitioner.getToken(jobKeyRange.start_key),
                                           partitioner.getToken(jobKeyRange.end_key));
                }
                else if (jobKeyRange.start_token != null)
                {
                    jobRange = new Range<>(partitioner.getTokenFactory().fromString(jobKeyRange.start_token),
                                           partitioner.getTokenFactory().fromString(jobKeyRange.end_token));
                }
                else
                {
                    logger.warn("ignoring jobKeyRange specified without start_key or start_token");
                }
            }

            Metadata metadata = cluster.getMetadata();

            // canonical ranges and nodes holding replicas
            Map> masterRangeNodes = getRangeMap(keyspace, metadata);

            for (TokenRange range : masterRangeNodes.keySet())
            {
                if (jobRange == null)
                {
                    // for each tokenRange, pick a live owner and ask it to compute bite-sized splits
                    splitfutures.add(executor.submit(new SplitCallable(range, masterRangeNodes.get(range), conf, session)));
                }
                else
                {
                    TokenRange jobTokenRange = rangeToTokenRange(metadata, jobRange);
                    if (range.intersects(jobTokenRange))
                    {
                        for (TokenRange intersection: range.intersectWith(jobTokenRange))
                        {
                            // for each tokenRange, pick a live owner and ask it to compute bite-sized splits
                            splitfutures.add(executor.submit(new SplitCallable(intersection,  masterRangeNodes.get(range), conf, session)));
                        }
                    }
                }
            }

            // wait until we have all the results back
            for (Future> futureInputSplits : splitfutures)
            {
                try
                {
                    splits.addAll(futureInputSplits.get());
                }
                catch (Exception e)
                {
                    throw new IOException("Could not get input splits", e);
                }
            }
        }
        finally
        {
            executor.shutdownNow();
        }

        assert splits.size() > 0;
        Collections.shuffle(splits, new Random(System.nanoTime()));
        return splits;
    }

    private TokenRange rangeToTokenRange(Metadata metadata, Range range)
    {
        return metadata.newTokenRange(metadata.newToken(partitioner.getTokenFactory().toString(range.left)),
                metadata.newToken(partitioner.getTokenFactory().toString(range.right)));
    }

    private Map getSubSplits(String keyspace, String cfName, TokenRange range, Configuration conf, Session session)
    {
        int splitSize = ConfigHelper.getInputSplitSize(conf);
        int splitSizeMb = ConfigHelper.getInputSplitSizeInMb(conf);
        try
        {
            return describeSplits(keyspace, cfName, range, splitSize, splitSizeMb, session);
        }
        catch (Exception e)
        {
            throw new RuntimeException(e);
        }
    }

    private Map> getRangeMap(String keyspace, Metadata metadata)
    {
        return metadata.getTokenRanges()
                       .stream()
                       .collect(toMap(p -> p, p -> metadata.getReplicas('"' + keyspace + '"', p)));
    }

    private Map describeSplits(String keyspace, String table, TokenRange tokenRange, int splitSize, int splitSizeMb, Session session)
    {
        String query = String.format("SELECT mean_partition_size, partitions_count " +
                                     "FROM %s.%s " +
                                     "WHERE keyspace_name = ? AND table_name = ? AND range_start = ? AND range_end = ?",
                                     SchemaConstants.SYSTEM_KEYSPACE_NAME,
                                     SystemKeyspace.SIZE_ESTIMATES);

        ResultSet resultSet = session.execute(query, keyspace, table, tokenRange.getStart().toString(), tokenRange.getEnd().toString());

        Row row = resultSet.one();

        long meanPartitionSize = 0;
        long partitionCount = 0;
        int splitCount = 0;

        if (row != null)
        {
            meanPartitionSize = row.getLong("mean_partition_size");
            partitionCount = row.getLong("partitions_count");

            splitCount = splitSizeMb > 0
                ? (int)(meanPartitionSize * partitionCount / splitSizeMb / 1024 / 1024)
                : (int)(partitionCount / splitSize);
        }

        // If we have no data on this split or the size estimate is 0,
        // return the full split i.e., do not sub-split
        // Assume smallest granularity of partition count available from CASSANDRA-7688
        if (splitCount == 0)
        {
            Map wrappedTokenRange = new HashMap<>();
            wrappedTokenRange.put(tokenRange, (long) 128);
            return wrappedTokenRange;
        }

        List splitRanges = tokenRange.splitEvenly(splitCount);
        Map rangesWithLength = new HashMap<>();
        for (TokenRange range : splitRanges)
            rangesWithLength.put(range, partitionCount/splitCount);

        return rangesWithLength;
    }

    // Old Hadoop API
    public InputSplit[] getSplits(JobConf jobConf, int numSplits) throws IOException
    {
        TaskAttemptContext tac = HadoopCompat.newTaskAttemptContext(jobConf, new TaskAttemptID());
        List newInputSplits = this.getSplits(tac);
        InputSplit[] oldInputSplits = new InputSplit[newInputSplits.size()];
        for (int i = 0; i < newInputSplits.size(); i++)
            oldInputSplits[i] = (ColumnFamilySplit)newInputSplits.get(i);
        return oldInputSplits;
    }

    /**
     * Gets a token tokenRange and splits it up according to the suggested
     * size into input splits that Hadoop can use.
     */
    class SplitCallable implements Callable>
    {

        private final TokenRange tokenRange;
        private final Set hosts;
        private final Configuration conf;
        private final Session session;

        public SplitCallable(TokenRange tr, Set hosts, Configuration conf, Session session)
        {
            this.tokenRange = tr;
            this.hosts = hosts;
            this.conf = conf;
            this.session = session;
        }

        public List call() throws Exception
        {
            ArrayList splits = new ArrayList<>();
            Map subSplits;
            subSplits = getSubSplits(keyspace, cfName, tokenRange, conf, session);
            // turn the sub-ranges into InputSplits
            String[] endpoints = new String[hosts.size()];

            // hadoop needs hostname, not ip
            int endpointIndex = 0;
            for (Host endpoint : hosts)
                endpoints[endpointIndex++] = endpoint.getAddress().getHostName();

            boolean partitionerIsOpp = partitioner instanceof OrderPreservingPartitioner || partitioner instanceof ByteOrderedPartitioner;

            for (Map.Entry subSplitEntry : subSplits.entrySet())
            {
                List ranges = subSplitEntry.getKey().unwrap();
                for (TokenRange subrange : ranges)
                {
                    ColumnFamilySplit split =
                            new ColumnFamilySplit(
                                    partitionerIsOpp ?
                                            subrange.getStart().toString().substring(2) : subrange.getStart().toString(),
                                    partitionerIsOpp ?
                                            subrange.getEnd().toString().substring(2) : subrange.getEnd().toString(),
                                    subSplitEntry.getValue(),
                                    endpoints);

                    logger.trace("adding {}", split);
                    splits.add(split);
                }
            }
            return splits;
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy