All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.db.rows.ComplexColumnData Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0-rc1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.db.rows;

import java.nio.ByteBuffer;
import java.util.Iterator;
import java.util.Objects;

import com.google.common.base.Function;

import org.apache.cassandra.db.DeletionPurger;
import org.apache.cassandra.db.DeletionTime;
import org.apache.cassandra.db.Digest;
import org.apache.cassandra.db.LivenessInfo;
import org.apache.cassandra.db.filter.ColumnFilter;
import org.apache.cassandra.db.marshal.ByteType;
import org.apache.cassandra.db.marshal.SetType;
import org.apache.cassandra.schema.ColumnMetadata;
import org.apache.cassandra.schema.DroppedColumn;
import org.apache.cassandra.utils.BiLongAccumulator;
import org.apache.cassandra.utils.LongAccumulator;
import org.apache.cassandra.utils.ObjectSizes;
import org.apache.cassandra.utils.btree.BTree;

/**
 * The data for a complex column, that is it's cells and potential complex
 * deletion time.
 */
public class ComplexColumnData extends ColumnData implements Iterable>
{
    static final Cell[] NO_CELLS = new Cell[0];

    private static final long EMPTY_SIZE = ObjectSizes.measure(new ComplexColumnData(ColumnMetadata.regularColumn("", "", "", SetType.getInstance(ByteType.instance, true)), NO_CELLS, new DeletionTime(0, 0)));

    // The cells for 'column' sorted by cell path.
    private final Object[] cells;

    private final DeletionTime complexDeletion;

    // Only ArrayBackedRow should call this.
    ComplexColumnData(ColumnMetadata column, Object[] cells, DeletionTime complexDeletion)
    {
        super(column);
        assert column.isComplex();
        assert cells.length > 0 || !complexDeletion.isLive();
        this.cells = cells;
        this.complexDeletion = complexDeletion;
    }

    public int cellsCount()
    {
        return BTree.size(cells);
    }

    public Cell getCell(CellPath path)
    {
        return (Cell) BTree.find(cells, column.asymmetricCellPathComparator(), path);
    }

    public Cell getCellByIndex(int idx)
    {
        return BTree.findByIndex(cells, idx);
    }

    /**
     * The complex deletion time of the complex column.
     * 

* The returned "complex deletion" is a deletion of all the cells of the column. For instance, * for a collection, this correspond to a full collection deletion. * Please note that this deletion says nothing about the individual cells of the complex column: * there can be no complex deletion but some of the individual cells can be deleted. * * @return the complex deletion time for the column this is the data of or {@code DeletionTime.LIVE} * if the column is not deleted. */ public DeletionTime complexDeletion() { return complexDeletion; } public Iterator> iterator() { return BTree.iterator(cells); } public Iterator> reverseIterator() { return BTree.iterator(cells, BTree.Dir.DESC); } public long accumulate(LongAccumulator> accumulator, long initialValue) { return BTree.accumulate(cells, accumulator, initialValue); } public long accumulate(BiLongAccumulator> accumulator, A arg, long initialValue) { return BTree.accumulate(cells, accumulator, arg, initialValue); } public int dataSize() { int size = complexDeletion.dataSize(); for (Cell cell : this) size += cell.dataSize(); return size; } public long unsharedHeapSizeExcludingData() { long heapSize = EMPTY_SIZE + ObjectSizes.sizeOfArray(cells); // TODO: this can be turned into a simple multiplication, at least while we have only one Cell implementation for (Cell cell : this) heapSize += cell.unsharedHeapSizeExcludingData(); return heapSize; } public void validate() { for (Cell cell : this) cell.validate(); } public void digest(Digest digest) { if (!complexDeletion.isLive()) complexDeletion.digest(digest); for (Cell cell : this) cell.digest(digest); } public boolean hasInvalidDeletions() { if (!complexDeletion.validate()) return true; for (Cell cell : this) if (cell.hasInvalidDeletions()) return true; return false; } public ComplexColumnData markCounterLocalToBeCleared() { return transformAndFilter(complexDeletion, Cell::markCounterLocalToBeCleared); } public ComplexColumnData filter(ColumnFilter filter, DeletionTime activeDeletion, DroppedColumn dropped, LivenessInfo rowLiveness) { ColumnFilter.Tester cellTester = filter.newTester(column); boolean isQueriedColumn = filter.fetchedColumnIsQueried(column); if (cellTester == null && activeDeletion.isLive() && dropped == null && isQueriedColumn) return this; DeletionTime newDeletion = activeDeletion.supersedes(complexDeletion) ? DeletionTime.LIVE : complexDeletion; return transformAndFilter(newDeletion, (cell) -> { CellPath path = cell.path(); boolean isForDropped = dropped != null && cell.timestamp() <= dropped.droppedTime; boolean isShadowed = activeDeletion.deletes(cell); boolean isFetchedCell = cellTester == null || cellTester.fetches(path); boolean isQueriedCell = isQueriedColumn && isFetchedCell && (cellTester == null || cellTester.fetchedCellIsQueried(path)); boolean isSkippableCell = !isFetchedCell || (!isQueriedCell && cell.timestamp() < rowLiveness.timestamp()); if (isForDropped || isShadowed || isSkippableCell) return null; // We should apply the same "optimization" as in Cell.deserialize to avoid discrepances // between sstables and memtables data, i.e resulting in a digest mismatch. return isQueriedCell ? cell : cell.withSkippedValue(); }); } public ComplexColumnData purge(DeletionPurger purger, int nowInSec) { DeletionTime newDeletion = complexDeletion.isLive() || purger.shouldPurge(complexDeletion) ? DeletionTime.LIVE : complexDeletion; return transformAndFilter(newDeletion, (cell) -> cell.purge(purger, nowInSec)); } public ComplexColumnData withOnlyQueriedData(ColumnFilter filter) { return transformAndFilter(complexDeletion, (cell) -> filter.fetchedCellIsQueried(column, cell.path()) ? null : cell); } private ComplexColumnData transformAndFilter(DeletionTime newDeletion, Function, ? extends Cell> function) { Object[] transformed = BTree.transformAndFilter(cells, function); if (cells == transformed && newDeletion == complexDeletion) return this; if (newDeletion == DeletionTime.LIVE && BTree.isEmpty(transformed)) return null; return new ComplexColumnData(column, transformed, newDeletion); } public ComplexColumnData updateAllTimestamp(long newTimestamp) { DeletionTime newDeletion = complexDeletion.isLive() ? complexDeletion : new DeletionTime(newTimestamp - 1, complexDeletion.localDeletionTime()); return transformAndFilter(newDeletion, (cell) -> (Cell) cell.updateAllTimestamp(newTimestamp)); } public long maxTimestamp() { long timestamp = complexDeletion.markedForDeleteAt(); for (Cell cell : this) timestamp = Math.max(timestamp, cell.timestamp()); return timestamp; } // This is the partner in crime of ArrayBackedRow.setValue. The exact warning apply. The short // version is: "don't use that method". void setValue(CellPath path, ByteBuffer value) { Cell current = (Cell) BTree.find(cells, column.asymmetricCellPathComparator(), path); BTree.replaceInSitu(cells, column.cellComparator(), current, current.withUpdatedValue(value)); } @Override public boolean equals(Object other) { if (this == other) return true; if(!(other instanceof ComplexColumnData)) return false; ComplexColumnData that = (ComplexColumnData)other; return this.column().equals(that.column()) && this.complexDeletion().equals(that.complexDeletion) && BTree.equals(this.cells, that.cells); } @Override public int hashCode() { return Objects.hash(column(), complexDeletion(), BTree.hashCode(cells)); } public static Builder builder() { return new Builder(); } public static class Builder { private DeletionTime complexDeletion; private ColumnMetadata column; private BTree.Builder> builder; public void newColumn(ColumnMetadata column) { this.column = column; this.complexDeletion = DeletionTime.LIVE; // default if writeComplexDeletion is not called if (builder == null) builder = BTree.builder(column.cellComparator()); else builder.reuse(column.cellComparator()); } public void addComplexDeletion(DeletionTime complexDeletion) { this.complexDeletion = complexDeletion; } public void addCell(Cell cell) { builder.add(cell); } public ComplexColumnData build() { if (complexDeletion.isLive() && builder.isEmpty()) return null; return new ComplexColumnData(column, builder.build(), complexDeletion); } } }