All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.dht.AbstractBounds Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0-rc1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.dht;

import java.io.DataInput;
import java.io.IOException;
import java.io.Serializable;
import java.util.Collection;
import java.util.List;

import org.apache.cassandra.db.DecoratedKey;
import org.apache.cassandra.db.PartitionPosition;
import org.apache.cassandra.db.TypeSizes;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.io.util.DataOutputPlus;
import org.apache.cassandra.net.MessagingService;
import org.apache.cassandra.utils.Pair;

public abstract class AbstractBounds> implements Serializable
{
    private static final long serialVersionUID = 1L;
    public static final IPartitionerDependentSerializer> tokenSerializer =
            new AbstractBoundsSerializer(Token.serializer);
    public static final IPartitionerDependentSerializer> rowPositionSerializer =
            new AbstractBoundsSerializer(PartitionPosition.serializer);

    private enum Type
    {
        RANGE,
        BOUNDS
    }

    public final T left;
    public final T right;

    public AbstractBounds(T left, T right)
    {
        assert left.getPartitioner() == right.getPartitioner();
        this.left = left;
        this.right = right;
    }

    /**
     * Given token T and AbstractBounds ?L,R?, returns Pair(?L,T], (T,R?),
     * where ? means that the same type of AbstractBounds is returned as the original.
     *
     * Put another way, returns a Pair of everything this AbstractBounds contains
     * up to and including the split position, and everything it contains after
     * (not including the split position).
     *
     * The original AbstractBounds must either contain the position T, or T
     * should be equals to the left bound L.
     *
     * If the split would only yield the same AbstractBound, null is returned
     * instead.
     */
    public abstract Pair, AbstractBounds> split(T position);
    public abstract boolean inclusiveLeft();
    public abstract boolean inclusiveRight();

    /**
     * Whether {@code left} and {@code right} forms a wrapping interval, that is if unwrapping wouldn't be a no-op.
     * 

* Note that the semantic is slightly different from {@link Range#isWrapAround()} in the sense that if both * {@code right} are minimal (for the partitioner), this methods return false (doesn't wrap) while * {@link Range#isWrapAround()} returns true (does wrap). This is confusing and we should fix it by * refactoring/rewriting the whole AbstractBounds hierarchy with cleaner semantics, but we don't want to risk * breaking something by changing {@link Range#isWrapAround()} in the meantime. */ public static > boolean strictlyWrapsAround(T left, T right) { return !(left.compareTo(right) <= 0 || right.isMinimum()); } public static > boolean noneStrictlyWrapsAround(Collection> bounds) { for (AbstractBounds b : bounds) { if (strictlyWrapsAround(b.left, b.right)) return false; } return true; } @Override public int hashCode() { return 31 * left.hashCode() + right.hashCode(); } /** return true if @param range intersects any of the given @param ranges */ public boolean intersects(Iterable> ranges) { for (Range range2 : ranges) { if (range2.intersects(this)) return true; } return false; } public abstract boolean contains(T start); public abstract List> unwrap(); public String getString(AbstractType keyValidator) { return getOpeningString() + format(left, keyValidator) + ", " + format(right, keyValidator) + getClosingString(); } private String format(T value, AbstractType keyValidator) { if (value instanceof DecoratedKey) { return keyValidator.getString(((DecoratedKey)value).getKey()); } else { return value.toString(); } } protected abstract String getOpeningString(); protected abstract String getClosingString(); public abstract boolean isStartInclusive(); public abstract boolean isEndInclusive(); public abstract AbstractBounds withNewRight(T newRight); public static class AbstractBoundsSerializer> implements IPartitionerDependentSerializer> { private static final int IS_TOKEN_FLAG = 0x01; private static final int START_INCLUSIVE_FLAG = 0x02; private static final int END_INCLUSIVE_FLAG = 0x04; IPartitionerDependentSerializer serializer; // Use for pre-3.0 protocol private static int kindInt(AbstractBounds ab) { int kind = ab instanceof Range ? Type.RANGE.ordinal() : Type.BOUNDS.ordinal(); if (!(ab.left instanceof Token)) kind = -(kind + 1); return kind; } // For from 3.0 onwards private static int kindFlags(AbstractBounds ab) { int flags = 0; if (ab.left instanceof Token) flags |= IS_TOKEN_FLAG; if (ab.isStartInclusive()) flags |= START_INCLUSIVE_FLAG; if (ab.isEndInclusive()) flags |= END_INCLUSIVE_FLAG; return flags; } public AbstractBoundsSerializer(IPartitionerDependentSerializer serializer) { this.serializer = serializer; } public void serialize(AbstractBounds range, DataOutputPlus out, int version) throws IOException { /* * The first int tells us if it's a range or bounds (depending on the value) _and_ if it's tokens or keys (depending on the * sign). We use negative kind for keys so as to preserve the serialization of token from older version. */ // !WARNING! While we don't support the pre-3.0 messaging protocol, we serialize the token range in the // system table (see SystemKeypsace.rangeToBytes) using the old/pre-3.0 format and until we deal with that // problem, we have to preserve this code. if (version < MessagingService.VERSION_30) out.writeInt(kindInt(range)); else out.writeByte(kindFlags(range)); serializer.serialize(range.left, out, version); serializer.serialize(range.right, out, version); } public AbstractBounds deserialize(DataInput in, IPartitioner p, int version) throws IOException { boolean isToken, startInclusive, endInclusive; // !WARNING! See serialize method above for why we still need to have that condition. if (version < MessagingService.VERSION_30) { int kind = in.readInt(); isToken = kind >= 0; if (!isToken) kind = -(kind+1); // Pre-3.0, everything that wasa not a Range was (wrongly) serialized as a Bound; startInclusive = kind != Type.RANGE.ordinal(); endInclusive = true; } else { int flags = in.readUnsignedByte(); isToken = (flags & IS_TOKEN_FLAG) != 0; startInclusive = (flags & START_INCLUSIVE_FLAG) != 0; endInclusive = (flags & END_INCLUSIVE_FLAG) != 0; } T left = serializer.deserialize(in, p, version); T right = serializer.deserialize(in, p, version); assert isToken == left instanceof Token; if (startInclusive) return endInclusive ? new Bounds(left, right) : new IncludingExcludingBounds(left, right); else return endInclusive ? new Range(left, right) : new ExcludingBounds(left, right); } public long serializedSize(AbstractBounds ab, int version) { // !WARNING! See serialize method above for why we still need to have that condition. int size = version < MessagingService.VERSION_30 ? TypeSizes.sizeof(kindInt(ab)) : 1; size += serializer.serializedSize(ab.left, version); size += serializer.serializedSize(ab.right, version); return size; } } public static > AbstractBounds bounds(Boundary min, Boundary max) { return bounds(min.boundary, min.inclusive, max.boundary, max.inclusive); } public static > AbstractBounds bounds(T min, boolean inclusiveMin, T max, boolean inclusiveMax) { if (inclusiveMin && inclusiveMax) return new Bounds(min, max); else if (inclusiveMax) return new Range(min, max); else if (inclusiveMin) return new IncludingExcludingBounds(min, max); else return new ExcludingBounds(min, max); } // represents one side of a bounds (which side is not encoded) public static class Boundary> { public final T boundary; public final boolean inclusive; public Boundary(T boundary, boolean inclusive) { this.boundary = boundary; this.inclusive = inclusive; } } public Boundary leftBoundary() { return new Boundary<>(left, inclusiveLeft()); } public Boundary rightBoundary() { return new Boundary<>(right, inclusiveRight()); } public static > boolean isEmpty(Boundary left, Boundary right) { int c = left.boundary.compareTo(right.boundary); return c > 0 || (c == 0 && !(left.inclusive && right.inclusive)); } public static > Boundary minRight(Boundary right1, T right2, boolean isInclusiveRight2) { return minRight(right1, new Boundary(right2, isInclusiveRight2)); } public static > Boundary minRight(Boundary right1, Boundary right2) { int c = right1.boundary.compareTo(right2.boundary); if (c != 0) return c < 0 ? right1 : right2; // return the exclusive version, if either return right2.inclusive ? right1 : right2; } public static > Boundary maxLeft(Boundary left1, T left2, boolean isInclusiveLeft2) { return maxLeft(left1, new Boundary(left2, isInclusiveLeft2)); } public static > Boundary maxLeft(Boundary left1, Boundary left2) { int c = left1.boundary.compareTo(left2.boundary); if (c != 0) return c > 0 ? left1 : left2; // return the exclusive version, if either return left2.inclusive ? left1 : left2; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy