All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.utils.streamhist.StreamingTombstoneHistogramBuilder Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.cassandra.utils.streamhist;

import java.math.RoundingMode;
import java.util.Arrays;
import java.util.stream.Collectors;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.math.IntMath;

import org.apache.cassandra.db.rows.Cell;

/**
 * Histogram that can be constructed from streaming of data.
 *
 * Histogram used to retrieve the number of droppable tombstones for example via
 * {@link org.apache.cassandra.io.sstable.format.SSTableReader#getDroppableTombstonesBefore(int)}.
 * 

* When an sstable is written (or streamed), this histogram-builder receives the "local deletion timestamp" * as an {@code int} via {@link #update(int)}. Negative values are not supported. *

* Algorithm: Histogram is represented as collection of {point, weight} pairs. When new point p with weight m is added: *

    *
  1. If point p is already exists in collection, add m to recorded value of point p
  2. *
  3. If there is no point p in the collection, add point p with weight m
  4. *
  5. If point was added and collection size became larger than maxBinSize:
  6. *
* *
    *
  1. Find nearest points p1 and p2 in the collection
  2. *
  3. Replace these two points with one weighted point p3 = (p1*m1+p2*m2)/(p1+p2)
  4. *
* *

* There are some optimization to make histogram builder faster: *

    *
  1. Spool: big map that saves from excessively merging of small bin. This map can contains up to maxSpoolSize points and accumulate weight from same points. * For example, if spoolSize=100, binSize=10 and there are only 50 different points. it will be only 40 merges regardless how many points will be added.
  2. *
  3. Spool is organized as open-addressing primitive hash map where odd elements are points and event elements are values. * Spool can not resize => when number of collisions became bigger than threshold or size became large that array_size/2 Spool is drained to bin
  4. *
  5. Bin is organized as sorted arrays. It reduces garbage collection pressure and allows to find elements in log(binSize) time via binary search
  6. *
  7. To use existing Arrays.binarySearch {point, values} in bin pairs is packed in one long
  8. *
*

* The original algorithm is taken from following paper: * Yael Ben-Haim and Elad Tom-Tov, "A Streaming Parallel Decision Tree Algorithm" (2010) * http://jmlr.csail.mit.edu/papers/volume11/ben-haim10a/ben-haim10a.pdf */ public class StreamingTombstoneHistogramBuilder { // Buffer with point-value pair private final DataHolder bin; // Keep a second, larger buffer to spool data in, before finalizing it into `bin` private Spool spool; // voluntarily give up resolution for speed private final int roundSeconds; public StreamingTombstoneHistogramBuilder(int maxBinSize, int maxSpoolSize, int roundSeconds) { assert maxBinSize > 0 && maxSpoolSize >= 0 && roundSeconds > 0: "Invalid arguments: maxBinSize:" + maxBinSize + " maxSpoolSize:" + maxSpoolSize + " delta:" + roundSeconds; this.roundSeconds = roundSeconds; this.bin = new DataHolder(maxBinSize + 1, roundSeconds); this.spool = new Spool(maxSpoolSize); } /** * Adds new point to this histogram with a default value of 1. * * @param point the point to be added */ public void update(int point) { update(point, 1); } /** * Adds new point {@param point} with value {@param value} to this histogram. */ public void update(int point, int value) { assert spool != null: "update is being called after releaseBuffers. This could be functionally okay, but this assertion is a canary to alert about unintended use before it is necessary."; point = ceilKey(point, roundSeconds); if (spool.capacity > 0) { if (!spool.tryAddOrAccumulate(point, value)) { flushHistogram(); final boolean success = spool.tryAddOrAccumulate(point, value); assert success : "Can not add value to spool"; // after spool flushing we should always be able to insert new value } } else { flushValue(point, value); } } /** * Drain the temporary spool into the final bins */ public void flushHistogram() { Spool spool = this.spool; if (spool != null) { spool.forEach(this::flushValue); spool.clear(); } } /** * Release inner spool buffers. Histogram remains readable and writable, but with lesser performance. * Not intended for use before finalization. */ public void releaseBuffers() { flushHistogram(); spool = null; } private void flushValue(int key, int spoolValue) { bin.addValue(key, spoolValue); if (bin.isFull()) { bin.mergeNearestPoints(); } } /** * Creates a 'finished' snapshot of the current state of the histogram, but leaves this builder instance * open for subsequent additions to the histograms. Basically, this allows us to have some degree of sanity * wrt sstable early open. */ public TombstoneHistogram build() { flushHistogram(); return new TombstoneHistogram(bin); } /** * An ordered collection of histogram buckets, each entry in the collection represents a pair (bucket, count). * Once the collection is full it merges the closest buckets using a weighted approach see {@link #mergeNearestPoints()}. */ static class DataHolder { private static final long EMPTY = Long.MAX_VALUE; private final long[] data; private final int roundSeconds; DataHolder(int maxCapacity, int roundSeconds) { data = new long[maxCapacity]; Arrays.fill(data, EMPTY); this.roundSeconds = roundSeconds; } DataHolder(DataHolder holder) { data = Arrays.copyOf(holder.data, holder.data.length); roundSeconds = holder.roundSeconds; } @VisibleForTesting int getValue(int point) { long key = wrap(point, 0); int index = Arrays.binarySearch(data, key); if (index < 0) index = -index - 1; if (index >= data.length) return -1; // not-found sentinel if (unwrapPoint(data[index]) != point) return -2; // not-found sentinel return unwrapValue(data[index]); } /** * Adds value {@code delta} to the point {@code point}. * * @return {@code true} if inserted, {@code false} if accumulated */ boolean addValue(int point, int delta) { long key = wrap(point, 0); int index = Arrays.binarySearch(data, key); if (index < 0) { index = -index - 1; assert (index < data.length) : "No more space in array"; if (unwrapPoint(data[index]) != point) //ok, someone else at this point, let's shift array and insert { assert (data[data.length - 1] == EMPTY) : "No more space in array"; System.arraycopy(data, index, data, index + 1, data.length - index - 1); data[index] = wrap(point, delta); return true; } else { data[index] = wrap(point, (long) unwrapValue(data[index]) + delta); } } else { data[index] = wrap(point, (long) unwrapValue(data[index]) + delta); } return false; } /** * Finds nearest points p1 and p2 in the collection * Replaces these two points with one weighted point p3 = (p1*m1+p2*m2)/(p1+p2) */ @VisibleForTesting void mergeNearestPoints() { assert isFull() : "DataHolder must be full in order to merge two points"; final int[] smallestDifference = findPointPairWithSmallestDistance(); final int point1 = smallestDifference[0]; final int point2 = smallestDifference[1]; long key = wrap(point1, 0); int index = Arrays.binarySearch(data, key); if (index < 0) { index = -index - 1; assert (index < data.length) : "Not found in array"; assert (unwrapPoint(data[index]) == point1) : "Not found in array"; } long value1 = unwrapValue(data[index]); long value2 = unwrapValue(data[index + 1]); assert (unwrapPoint(data[index + 1]) == point2) : "point2 should follow point1"; long sum = value1 + value2; //let's evaluate in long values to handle overflow in multiplication int newPoint = saturatingCastToInt((point1 * value1 + point2 * value2) / sum); newPoint = ceilKey(newPoint, roundSeconds); data[index] = wrap(newPoint, saturatingCastToInt(sum)); System.arraycopy(data, index + 2, data, index + 1, data.length - index - 2); data[data.length - 1] = EMPTY; } private int[] findPointPairWithSmallestDistance() { assert isFull(): "The DataHolder must be full in order to find the closest pair of points"; int point1 = 0; int point2 = Integer.MAX_VALUE; for (int i = 0; i < data.length - 1; i++) { int pointA = unwrapPoint(data[i]); int pointB = unwrapPoint(data[i + 1]); assert pointB > pointA : "DataHolder not sorted, p2(" + pointB +") < p1(" + pointA + ") for " + this; if (point2 - point1 > pointB - pointA) { point1 = pointA; point2 = pointB; } } return new int[]{point1, point2}; } private int[] unwrap(long key) { final int point = unwrapPoint(key); final int value = unwrapValue(key); return new int[]{ point, value }; } private int unwrapPoint(long key) { return (int) (key >> 32); } private int unwrapValue(long key) { return (int) (key & 0xFF_FF_FF_FFL); } private long wrap(int point, long value) { assert point >= 0 : "Invalid argument: point:" + point; return (((long) point) << 32) | saturatingCastToInt(value); } public String toString() { return Arrays.stream(data).filter(x -> x != EMPTY).mapToObj(this::unwrap).map(Arrays::toString).collect(Collectors.joining()); } public boolean isFull() { return data[data.length - 1] != EMPTY; } public void forEach(HistogramDataConsumer histogramDataConsumer) throws E { for (long datum : data) { if (datum == EMPTY) { break; } histogramDataConsumer.consume(unwrapPoint(datum), unwrapValue(datum)); } } public int size() { int[] accumulator = new int[1]; forEach((point, value) -> accumulator[0]++); return accumulator[0]; } public double sum(int b) { double sum = 0; for (int i = 0; i < data.length; i++) { long pointAndValue = data[i]; if (pointAndValue == EMPTY) { break; } final int point = unwrapPoint(pointAndValue); final int value = unwrapValue(pointAndValue); if (point > b) { if (i == 0) { // no prev point return 0; } else { final int prevPoint = unwrapPoint(data[i - 1]); final int prevValue = unwrapValue(data[i - 1]); // calculate estimated count mb for point b double weight = (b - prevPoint) / (double) (point - prevPoint); double mb = prevValue + (value - prevValue) * weight; sum -= prevValue; sum += (prevValue + mb) * weight / 2; sum += prevValue / 2.0; return sum; } } else { sum += value; } } return sum; } @Override public int hashCode() { return Arrays.hashCode(data); } @Override public boolean equals(Object o) { if (!(o instanceof DataHolder)) return false; final DataHolder other = ((DataHolder) o); if (this.size()!=other.size()) return false; for (int i=0; i capacity) { return false; } final int cell = (capacity - 1) & hash(point); // We use linear scanning. I think cluster of 100 elements is large enough to give up. for (int attempt = 0; attempt < 100; attempt++) { if (tryCell(cell + attempt, point, delta)) return true; } return false; } private int hash(int i) { long largePrime = 948701839L; return (int) (i * largePrime); } void forEach(HistogramDataConsumer consumer) throws E { for (int i = 0; i < points.length; i++) { if (points[i] != -1) { consumer.consume(points[i], values[i]); } } } private boolean tryCell(int cell, int point, int delta) { assert cell >= 0 && point >= 0 && delta >= 0 : "Invalid arguments: cell:" + cell + " point:" + point + " delta:" + delta; cell = cell % points.length; if (points[cell] == -1) { points[cell] = point; values[cell] = delta; size++; return true; } if (points[cell] == point) { values[cell] = saturatingCastToInt((long) values[cell] + (long) delta); return true; } return false; } public String toString() { StringBuilder sb = new StringBuilder(); sb.append('['); for (int i = 0; i < points.length; i++) { if (points[i] == -1) continue; if (sb.length() > 1) sb.append(", "); sb.append('[').append(points[i]).append(',').append(values[i]).append(']'); } sb.append(']'); return sb.toString(); } } private static int ceilKey(int point, int bucketSize) { int delta = point % bucketSize; if (delta == 0) return point; return saturatingCastToMaxDeletionTime((long) point + (long) bucketSize - (long) delta); } public static int saturatingCastToInt(long value) { return (int) (value > Integer.MAX_VALUE ? Integer.MAX_VALUE : value); } /** * Cast to an int with maximum value of {@code Cell.MAX_DELETION_TIME} to avoid representing values that * aren't a tombstone */ public static int saturatingCastToMaxDeletionTime(long value) { return (value < 0L || value > Cell.MAX_DELETION_TIME) ? Cell.MAX_DELETION_TIME : (int) value; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy