All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.utils.btree.BTree Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.cassandra.utils.btree;

import java.util.*;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
import com.google.common.collect.Iterators;
import com.google.common.collect.Ordering;

import org.apache.cassandra.utils.BiLongAccumulator;
import org.apache.cassandra.utils.BulkIterator;
import org.apache.cassandra.utils.LongAccumulator;
import org.apache.cassandra.utils.ObjectSizes;
import org.apache.cassandra.utils.caching.TinyThreadLocalPool;

import static java.lang.Math.max;
import static java.lang.Math.min;

public class BTree
{
    /**
     * The {@code BRANCH_FACTOR} is defined as the maximum number of children of each branch, with between
     * BRANCH_FACTOR/2-1 and BRANCH_FACTOR-1 keys being stored in every node. This yields a minimum tree size of
     * {@code (BRANCH_FACTOR/2)^height - 1} and a maximum tree size of {@code BRANCH_FACTOR^height - 1}.
     * 

* Branches differ from leaves only in that they contain a suffix region containing the child nodes that occur * either side of the keys, and a sizeMap in the last position, permitting seeking by index within the tree. * Nodes are disambiguated by the length of the array that represents them: an even number is a branch, odd a leaf. *

* Leaf Nodes are represented by an odd-length array of keys, with the final element possibly null, i.e. * Object[V1, V2, ...,null?] *

* Branch nodes: Object[V1, V2, ..., child[<V1.key], child[<V2.key], ..., child[< Inf], sizeMap] * Each child is either a branch or leaf, i.e., always an Object[]. * The key elements in a branch node occupy the first half of the array (minus one) *

* BTrees are immutable; updating one returns a new tree that reuses unmodified nodes. *

* There are no references back to a parent node from its children (this would make it impossible to re-use * subtrees when modifying the tree, since the modified tree would need new parent references). * Instead, we store these references in a Path as needed when navigating the tree. */ public static final int BRANCH_SHIFT = Integer.getInteger("cassandra.btree.branchshift", 5); private static final int BRANCH_FACTOR = 1 << BRANCH_SHIFT; public static final int MIN_KEYS = BRANCH_FACTOR / 2 - 1; public static final int MAX_KEYS = BRANCH_FACTOR - 1; // An empty BTree Leaf - which is the same as an empty BTree private static final Object[] EMPTY_LEAF = new Object[1]; private static final int[][] DENSE_SIZE_MAPS = buildBalancedSizeMaps(BRANCH_SHIFT); private static final long[] PERFECT_DENSE_SIZE_ON_HEAP = sizeOnHeapOfPerfectTrees(BRANCH_SHIFT); /** * Represents the direction of iteration. */ public enum Dir { ASC, DESC; public Dir invert() { return this == ASC ? DESC : ASC; } public static Dir desc(boolean desc) { return desc ? DESC : ASC; } } /** * Returns an empty BTree * * @return an empty BTree */ public static Object[] empty() { return EMPTY_LEAF; } /** * Create a BTree containing only the specified object * * @return an new BTree containing only the specified object */ public static Object[] singleton(Object value) { return new Object[]{ value }; } @Deprecated public static Object[] build(Collection source) { return build(source, UpdateFunction.noOp()); } @Deprecated public static Object[] build(Collection source, UpdateFunction updateF) { return build(BulkIterator.of(source.iterator()), source.size(), updateF); } public static Object[] build(BulkIterator source, int size, UpdateFunction updateF) { assert size >= 0; if (size == 0) return EMPTY_LEAF; if (size <= MAX_KEYS) return buildLeaf(source, size, updateF); return buildRoot(source, size, updateF); } /** * Build a leaf with {@code size} elements taken in bulk from {@code insert}, and apply {@code updateF} to these elements */ private static Object[] buildLeaf(BulkIterator insert, int size, UpdateFunction updateF) { Object[] values = new Object[size | 1]; // ensure that we have an odd-length array insert.fetch(values, 0, size); if (!isSimple(updateF)) { updateF.onAllocatedOnHeap(ObjectSizes.sizeOfReferenceArray(values.length)); for (int i = 0; i < size; i++) values[i] = updateF.insert((I) values[i]); } return values; } /** * Build a leaf with {@code size} elements taken in bulk from {@code insert}, and apply {@code updateF} to these elements * Do not invoke {@code updateF.onAllocated}. Used by {@link #buildPerfectDenseWithoutSizeTracking} which * track the size for the entire tree they build in order to save on work. */ private static Object[] buildLeafWithoutSizeTracking(BulkIterator insert, int size, UpdateFunction updateF) { Object[] values = new Object[size | 1]; // ensure that we have an odd-length array insert.fetch(values, 0, size); if (!isSimple(updateF)) { for (int i = 0; i < size; i++) values[i] = updateF.insert((I) values[i]); } return values; } /** * Build a root node from the first {@code size} elements from {@code source}, applying {@code updateF} to those elements. * A root node is permitted to have as few as two children, if a branch (i.e. if {@code size > MAX_SIZE}. */ private static Object[] buildRoot(BulkIterator source, int size, UpdateFunction updateF) { // first calculate the minimum height needed for this size of tree int height = minHeight(size); assert height > 1; assert height * BRANCH_SHIFT < 32; int denseChildSize = denseSize(height - 1); // Divide the size by the child size + 1, adjusting size by +1 to compensate for not having an upper key on the // last child and rounding up, i.e. (size + 1 + div - 1) / div == size / div + 1 where div = childSize + 1 int childCount = size / (denseChildSize + 1) + 1; return buildMaximallyDense(source, childCount, size, height, updateF); } /** * Build a tree containing only dense nodes except at most two on any level. This matches the structure that * a FastBuilder would create, with some optimizations in constructing the dense nodes. *

* We do this by repeatedly constructing fully dense children until we reach a threshold, chosen so that we would * not be able to create another child with fully dense children and at least MIN_KEYS keys. After the threshold, * the remainder may fit a single node, or is otherwise split roughly halfway to create one child with at least * MIN_KEYS+1 fully dense children, and one that has at least MIN_KEYS-1 fully dense and up to two non-dense. */ private static Object[] buildMaximallyDense(BulkIterator source, int childCount, int size, int height, UpdateFunction updateF) { assert childCount <= MAX_KEYS + 1; int keyCount = childCount - 1; int[] sizeMap = new int[childCount]; Object[] branch = new Object[childCount * 2]; if (height == 2) { // we use the _exact same logic_ as below, only we invoke buildLeaf int remaining = size; int threshold = MAX_KEYS + 1 + MIN_KEYS; int i = 0; while (remaining >= threshold) { branch[keyCount + i] = buildLeaf(source, MAX_KEYS, updateF); branch[i] = isSimple(updateF) ? source.next() : updateF.insert(source.next()); remaining -= MAX_KEYS + 1; sizeMap[i++] = size - remaining - 1; } if (remaining > MAX_KEYS) { int childSize = remaining / 2; branch[keyCount + i] = buildLeaf(source, childSize, updateF); branch[i] = isSimple(updateF) ? source.next() : updateF.insert(source.next()); remaining -= childSize + 1; sizeMap[i++] = size - remaining - 1; } branch[keyCount + i] = buildLeaf(source, remaining, updateF); sizeMap[i++] = size; assert i == childCount; } else { --height; int denseChildSize = denseSize(height); int denseGrandChildSize = denseSize(height - 1); // The threshold is the point after which we can't add a dense child and still add another child with // at least MIN_KEYS fully dense children plus at least one more key. int threshold = denseChildSize + 1 + MIN_KEYS * (denseGrandChildSize + 1); int remaining = size; int i = 0; // Add dense children until we reach the threshold. while (remaining >= threshold) { branch[keyCount + i] = buildPerfectDense(source, height, updateF); branch[i] = isSimple(updateF) ? source.next() : updateF.insert(source.next()); remaining -= denseChildSize + 1; sizeMap[i++] = size - remaining - 1; } // At this point the remainder either fits in one child, or too much for one but too little for one // perfectly dense and a second child with enough grandchildren to be valid. In the latter case, the // remainder should be split roughly in half, where the first child only has dense grandchildren. if (remaining > denseChildSize) { int grandChildCount = remaining / ((denseGrandChildSize + 1) * 2); assert grandChildCount >= MIN_KEYS + 1; int childSize = grandChildCount * (denseGrandChildSize + 1) - 1; branch[keyCount + i] = buildMaximallyDense(source, grandChildCount, childSize, height, updateF); branch[i] = isSimple(updateF) ? source.next() : updateF.insert(source.next()); remaining -= childSize + 1; sizeMap[i++] = size - remaining - 1; } // Put the remainder in the last child, it is now guaranteed to fit and have the required minimum of children. int grandChildCount = remaining / (denseGrandChildSize + 1) + 1; assert grandChildCount >= MIN_KEYS + 1; int childSize = remaining; branch[keyCount + i] = buildMaximallyDense(source, grandChildCount, childSize, height, updateF); sizeMap[i++] = size; assert i == childCount; } branch[2 * keyCount + 1] = sizeMap; if (!isSimple(updateF)) updateF.onAllocatedOnHeap(ObjectSizes.sizeOfArray(branch) + ObjectSizes.sizeOfArray(sizeMap)); return branch; } private static Object[] buildPerfectDense(BulkIterator source, int height, UpdateFunction updateF) { Object[] result = buildPerfectDenseWithoutSizeTracking(source, height, updateF); updateF.onAllocatedOnHeap(PERFECT_DENSE_SIZE_ON_HEAP[height]); return result; } /** * Build a tree of size precisely {@code branchFactor^height - 1} */ private static Object[] buildPerfectDenseWithoutSizeTracking(BulkIterator source, int height, UpdateFunction updateF) { int keyCount = (1 << BRANCH_SHIFT) - 1; Object[] node = new Object[(1 << BRANCH_SHIFT) * 2]; if (height == 2) { int childSize = treeSize2n(1, BRANCH_SHIFT); for (int i = 0; i < keyCount; i++) { node[keyCount + i] = buildLeafWithoutSizeTracking(source, childSize, updateF); node[i] = isSimple(updateF) ? source.next() : updateF.insert(source.next()); } node[2 * keyCount] = buildLeafWithoutSizeTracking(source, childSize, updateF); } else { for (int i = 0; i < keyCount; i++) { Object[] child = buildPerfectDenseWithoutSizeTracking(source, height - 1, updateF); node[keyCount + i] = child; node[i] = isSimple(updateF) ? source.next() : updateF.insert(source.next()); } node[2 * keyCount] = buildPerfectDenseWithoutSizeTracking(source, height - 1, updateF); } node[keyCount * 2 + 1] = DENSE_SIZE_MAPS[height - 2]; return node; } public static Object[] update(Object[] toUpdate, Object[] insert, Comparator comparator) { return BTree.update(toUpdate, insert, comparator, UpdateFunction.noOp()); } /** * Inserts {@code insert} into {@code update}, applying {@code updateF} to each new item in {@code insert}, * as well as any matched items in {@code update}. *

* Note that {@code UpdateFunction.noOp} is assumed to indicate a lack of interest in which value survives. */ public static Object[] update(Object[] toUpdate, Object[] insert, Comparator comparator, UpdateFunction updateF) { // perform some initial obvious optimisations if (isEmpty(insert)) return toUpdate; // do nothing if update is empty if (isEmpty(toUpdate)) { if (isSimple(updateF)) return insert; // if update is empty and updateF is trivial, return our new input // if update is empty and updateF is non-trivial, perform a simple fast transformation of the input tree insert = BTree.transform(insert, updateF::insert); updateF.onAllocatedOnHeap(sizeOnHeapOf(insert)); return insert; } if (isLeaf(toUpdate) && isLeaf(insert)) { // if both are leaves, perform a tight-loop leaf variant of update // possibly flipping the input order if sizes suggest and updateF permits if (updateF == (UpdateFunction) UpdateFunction.noOp && toUpdate.length < insert.length) { Object[] tmp = toUpdate; toUpdate = insert; insert = tmp; } Object[] merged = updateLeaves(toUpdate, insert, comparator, updateF); updateF.onAllocatedOnHeap(sizeOnHeapOf(merged) - sizeOnHeapOf(toUpdate)); return merged; } if (!isLeaf(insert) && isSimple(updateF)) { // consider flipping the order of application, if update is much larger than insert and applying unary no-op int updateSize = size(toUpdate); int insertSize = size(insert); int scale = Integer.numberOfLeadingZeros(updateSize) - Integer.numberOfLeadingZeros(insertSize); if (scale >= 4) { // i.e. at roughly 16x the size, or one tier deeper - very arbitrary, should pick more carefully // experimentally, at least at 64x the size the difference in performance is ~10x Object[] tmp = insert; insert = toUpdate; toUpdate = tmp; if (updateF != (UpdateFunction) UpdateFunction.noOp) updateF = ((UpdateFunction.Simple) updateF).flip(); } } try (Updater updater = Updater.get()) { return updater.update(toUpdate, insert, comparator, updateF); } } /** * A fast tight-loop variant of updating one btree with another, when both are leaves. */ public static Object[] updateLeaves(Object[] unode, Object[] inode, Comparator comparator, UpdateFunction updateF) { int upos = -1, usz = sizeOfLeaf(unode); Existing uk = (Existing) unode[0]; int ipos = 0, isz = sizeOfLeaf(inode); Insert ik = (Insert) inode[0]; Existing merged = null; int c = -1; while (c <= 0) // optimistic: find the first point in the original leaf that is modified (if any) { if (c < 0) { upos = exponentialSearch(comparator, unode, upos + 1, usz, ik); c = upos < 0 ? 1 : 0; // positive or zero if (upos < 0) upos = -(1 + upos); if (upos == usz) break; uk = (Existing) unode[upos]; } else // c == 0 { merged = updateF.merge(uk, ik); if (merged != uk) break; if (++ipos == isz) return unode; if (++upos == usz) break; c = comparator.compare(uk = (Existing) unode[upos], ik = (Insert) inode[ipos]); } } // exit conditions: c == 0 && merged != uk // or: c > 0 // or: upos == usz try (FastBuilder builder = fastBuilder()) { if (upos > 0) { // copy any initial section that is unmodified builder.leaf().copy(unode, 0, upos); } // handle prior loop's exit condition // we always have either an ik, or an ik merged with uk, to handle if (upos < usz) { if (c == 0) { builder.add(merged); if (++upos < usz) uk = (Existing) unode[upos]; } else // c > 0 { builder.add(updateF.insert(ik)); } if (++ipos < isz) ik = (Insert) inode[ipos]; if (upos < usz && ipos < isz) { // note: this code is _identical_ to equivalent section in FastUpdater c = comparator.compare(uk, ik); while (true) { if (c == 0) { builder.leaf().addKey(updateF.merge(uk, ik)); ++upos; ++ipos; if (upos == usz || ipos == isz) break; c = comparator.compare(uk = (Existing) unode[upos], ik = (Insert) inode[ipos]); } else if (c < 0) { int until = exponentialSearch(comparator, unode, upos + 1, usz, ik); c = until < 0 ? 1 : 0; // must find greater or equal; set >= 0 (equal) to 0; set < 0 (greater) to c=+ve if (until < 0) until = -(1 + until); builder.leaf().copy(unode, upos, until - upos); if ((upos = until) == usz) break; uk = (Existing) unode[upos]; } else { int until = exponentialSearch(comparator, inode, ipos + 1, isz, uk); c = until & 0x80000000; // must find less or equal; set >= 0 (equal) to 0, otherwise leave intact if (until < 0) until = -(1 + until); builder.leaf().copy(inode, ipos, until - ipos, updateF); if ((ipos = until) == isz) break; ik = (Insert) inode[ipos]; } } } if (upos < usz) { // ipos == isz builder.leaf().copy(unode, upos, usz - upos); } } if (ipos < isz) { // upos == usz builder.leaf().copy(inode, ipos, isz - ipos, updateF); } return builder.build(); } } public static void reverseInSitu(Object[] tree) { reverseInSitu(tree, height(tree), true); } /** * The internal implementation of {@link #reverseInSitu(Object[])}. * Takes two arguments that help minimise garbage generation, by testing sizeMaps against * known globallyl shared sizeMap for dense nodes that do not need to be modified, and * for permitting certain users (namely FastBuilder) to declare that non-matching sizeMap * can be mutated directly without allocating {@code new int[]} * * @param tree the tree to reverse in situ * @param height the height of the tree * @param copySizeMaps whether or not to copy any non-globally-shared sizeMap before reversing them */ private static void reverseInSitu(Object[] tree, int height, boolean copySizeMaps) { if (isLeaf(tree)) { reverse(tree, 0, sizeOfLeaf(tree)); } else { int keyCount = shallowSizeOfBranch(tree); reverse(tree, 0, keyCount); reverse(tree, keyCount, keyCount * 2 + 1); for (int i = keyCount; i <= keyCount * 2; ++i) reverseInSitu((Object[]) tree[i], height - 1, copySizeMaps); int[] sizeMap = (int[]) tree[2 * keyCount + 1]; if (sizeMap != DENSE_SIZE_MAPS[height - 2]) // no need to reverse a dense map; same in both directions { if (copySizeMaps) sizeMap = sizeMap.clone(); sizeMapToSizes(sizeMap); reverse(sizeMap, 0, sizeMap.length); sizesToSizeMap(sizeMap); } } } public static Iterator iterator(Object[] btree) { return iterator(btree, Dir.ASC); } public static Iterator iterator(Object[] btree, Dir dir) { return isLeaf(btree) ? new LeafBTreeSearchIterator<>(btree, null, dir) : new FullBTreeSearchIterator<>(btree, null, dir); } public static Iterator iterator(Object[] btree, int lb, int ub, Dir dir) { return isLeaf(btree) ? new LeafBTreeSearchIterator<>(btree, null, dir, lb, ub) : new FullBTreeSearchIterator<>(btree, null, dir, lb, ub); } public static Iterable iterable(Object[] btree) { return iterable(btree, Dir.ASC); } public static Iterable iterable(Object[] btree, Dir dir) { return () -> iterator(btree, dir); } public static Iterable iterable(Object[] btree, int lb, int ub, Dir dir) { return () -> iterator(btree, lb, ub, dir); } /** * Returns an Iterator over the entire tree * * @param btree the tree to iterate over * @param dir direction of iteration * @param * @return */ public static BTreeSearchIterator slice(Object[] btree, Comparator comparator, Dir dir) { return isLeaf(btree) ? new LeafBTreeSearchIterator<>(btree, comparator, dir) : new FullBTreeSearchIterator<>(btree, comparator, dir); } /** * @param btree the tree to iterate over * @param comparator the comparator that defines the ordering over the items in the tree * @param start the beginning of the range to return, inclusive (in ascending order) * @param end the end of the range to return, exclusive (in ascending order) * @param dir if false, the iterator will start at the last item and move backwards * @return an Iterator over the defined sub-range of the tree */ public static BTreeSearchIterator slice(Object[] btree, Comparator comparator, K start, K end, Dir dir) { return slice(btree, comparator, start, true, end, false, dir); } /** * @param btree the tree to iterate over * @param comparator the comparator that defines the ordering over the items in the tree * @param startIndex the start index of the range to return, inclusive * @param endIndex the end index of the range to return, inclusive * @param dir if false, the iterator will start at the last item and move backwards * @return an Iterator over the defined sub-range of the tree */ public static BTreeSearchIterator slice(Object[] btree, Comparator comparator, int startIndex, int endIndex, Dir dir) { return isLeaf(btree) ? new LeafBTreeSearchIterator<>(btree, comparator, dir, startIndex, endIndex) : new FullBTreeSearchIterator<>(btree, comparator, dir, startIndex, endIndex); } /** * @param btree the tree to iterate over * @param comparator the comparator that defines the ordering over the items in the tree * @param start low bound of the range * @param startInclusive inclusivity of lower bound * @param end high bound of the range * @param endInclusive inclusivity of higher bound * @param dir direction of iteration * @return an Iterator over the defined sub-range of the tree */ public static BTreeSearchIterator slice(Object[] btree, Comparator comparator, K start, boolean startInclusive, K end, boolean endInclusive, Dir dir) { int inclusiveLowerBound = max(0, start == null ? Integer.MIN_VALUE : startInclusive ? ceilIndex(btree, comparator, start) : higherIndex(btree, comparator, start)); int inclusiveUpperBound = min(size(btree) - 1, end == null ? Integer.MAX_VALUE : endInclusive ? floorIndex(btree, comparator, end) : lowerIndex(btree, comparator, end)); return isLeaf(btree) ? new LeafBTreeSearchIterator<>(btree, comparator, dir, inclusiveLowerBound, inclusiveUpperBound) : new FullBTreeSearchIterator<>(btree, comparator, dir, inclusiveLowerBound, inclusiveUpperBound); } /** * @return the item in the tree that sorts as equal to the search argument, or null if no such item */ public static V find(Object[] node, Comparator comparator, V find) { while (true) { int keyEnd = getKeyEnd(node); int i = Arrays.binarySearch((V[]) node, 0, keyEnd, find, comparator); if (i >= 0) return (V) node[i]; if (isLeaf(node)) return null; i = -1 - i; node = (Object[]) node[keyEnd + i]; } } /** * Modifies the provided btree directly. THIS SHOULD NOT BE USED WITHOUT EXTREME CARE as BTrees are meant to be immutable. * Finds and replaces the item provided by index in the tree. */ public static void replaceInSitu(Object[] tree, int index, V replace) { // WARNING: if semantics change, see also InternalCursor.seekTo, which mirrors this implementation if ((index < 0) | (index >= size(tree))) throw new IndexOutOfBoundsException(index + " not in range [0.." + size(tree) + ")"); while (!isLeaf(tree)) { final int[] sizeMap = getSizeMap(tree); int boundary = Arrays.binarySearch(sizeMap, index); if (boundary >= 0) { // exact match, in this branch node assert boundary < sizeMap.length - 1; tree[boundary] = replace; return; } boundary = -1 - boundary; if (boundary > 0) { assert boundary < sizeMap.length; index -= (1 + sizeMap[boundary - 1]); } tree = (Object[]) tree[getChildStart(tree) + boundary]; } assert index < getLeafKeyEnd(tree); tree[index] = replace; } /** * Modifies the provided btree directly. THIS SHOULD NOT BE USED WITHOUT EXTREME CARE as BTrees are meant to be immutable. * Finds and replaces the provided item in the tree. Both should sort as equal to each other (although this is not enforced) */ public static void replaceInSitu(Object[] node, Comparator comparator, V find, V replace) { while (true) { int keyEnd = getKeyEnd(node); int i = Arrays.binarySearch((V[]) node, 0, keyEnd, find, comparator); if (i >= 0) { assert find == node[i]; node[i] = replace; return; } if (isLeaf(node)) throw new NoSuchElementException(); i = -1 - i; node = (Object[]) node[keyEnd + i]; } } /** * Honours result semantics of {@link Arrays#binarySearch}, as though it were performed on the tree flattened into an array * * @return index of item in tree, or (-(insertion point) - 1) if not present */ public static int findIndex(Object[] node, Comparator comparator, V find) { int lb = 0; while (true) { int keyEnd = getKeyEnd(node); int i = Arrays.binarySearch((V[]) node, 0, keyEnd, find, comparator); boolean exact = i >= 0; if (isLeaf(node)) return exact ? lb + i : i - lb; if (!exact) i = -1 - i; int[] sizeMap = getSizeMap(node); if (exact) return lb + sizeMap[i]; else if (i > 0) lb += sizeMap[i - 1] + 1; node = (Object[]) node[keyEnd + i]; } } /** * @return the value at the index'th position in the tree, in tree order */ public static V findByIndex(Object[] tree, int index) { // WARNING: if semantics change, see also InternalCursor.seekTo, which mirrors this implementation if ((index < 0) | (index >= size(tree))) throw new IndexOutOfBoundsException(index + " not in range [0.." + size(tree) + ")"); Object[] node = tree; while (true) { if (isLeaf(node)) { int keyEnd = getLeafKeyEnd(node); assert index < keyEnd; return (V) node[index]; } int[] sizeMap = getSizeMap(node); int boundary = Arrays.binarySearch(sizeMap, index); if (boundary >= 0) { // exact match, in this branch node assert boundary < sizeMap.length - 1; return (V) node[boundary]; } boundary = -1 - boundary; if (boundary > 0) { assert boundary < sizeMap.length; index -= (1 + sizeMap[boundary - 1]); } node = (Object[]) node[getChildStart(node) + boundary]; } } /* since we have access to binarySearch semantics within indexOf(), we can use this to implement * lower/upper/floor/higher very trivially * * this implementation is *not* optimal; it requires two logarithmic traversals, although the second is much cheaper * (having less height, and operating over only primitive arrays), and the clarity is compelling */ public static int lowerIndex(Object[] btree, Comparator comparator, V find) { int i = findIndex(btree, comparator, find); if (i < 0) i = -1 - i; return i - 1; } public static V lower(Object[] btree, Comparator comparator, V find) { int i = lowerIndex(btree, comparator, find); return i >= 0 ? findByIndex(btree, i) : null; } public static int floorIndex(Object[] btree, Comparator comparator, V find) { int i = findIndex(btree, comparator, find); if (i < 0) i = -2 - i; return i; } public static V floor(Object[] btree, Comparator comparator, V find) { int i = floorIndex(btree, comparator, find); return i >= 0 ? findByIndex(btree, i) : null; } public static int higherIndex(Object[] btree, Comparator comparator, V find) { int i = findIndex(btree, comparator, find); if (i < 0) i = -1 - i; else i++; return i; } public static V higher(Object[] btree, Comparator comparator, V find) { int i = higherIndex(btree, comparator, find); return i < size(btree) ? findByIndex(btree, i) : null; } public static int ceilIndex(Object[] btree, Comparator comparator, V find) { int i = findIndex(btree, comparator, find); if (i < 0) i = -1 - i; return i; } public static V ceil(Object[] btree, Comparator comparator, V find) { int i = ceilIndex(btree, comparator, find); return i < size(btree) ? findByIndex(btree, i) : null; } // UTILITY METHODS // get the upper bound we should search in for keys in the node static int getKeyEnd(Object[] node) { if (isLeaf(node)) return getLeafKeyEnd(node); else return getBranchKeyEnd(node); } // get the last index that is non-null in the leaf node static int getLeafKeyEnd(Object[] node) { int len = node.length; return node[len - 1] == null ? len - 1 : len; } // return the boundary position between keys/children for the branch node // == number of keys, as they are indexed from zero static int getBranchKeyEnd(Object[] branchNode) { return (branchNode.length / 2) - 1; } /** * @return first index in a branch node containing child nodes */ static int getChildStart(Object[] branchNode) { return getBranchKeyEnd(branchNode); } /** * @return last index + 1 in a branch node containing child nodes */ static int getChildEnd(Object[] branchNode) { return branchNode.length - 1; } /** * @return number of children in a branch node */ static int getChildCount(Object[] branchNode) { return branchNode.length / 2; } /** * @return the size map for the branch node */ static int[] getSizeMap(Object[] branchNode) { return (int[]) branchNode[getChildEnd(branchNode)]; } /** * @return the size map for the branch node */ static int lookupSizeMap(Object[] branchNode, int index) { return getSizeMap(branchNode)[index]; } // get the size from the btree's index (fails if not present) public static int size(Object[] tree) { if (isLeaf(tree)) return getLeafKeyEnd(tree); int length = tree.length; // length - 1 == getChildEnd == getPositionOfSizeMap // (length / 2) - 1 == getChildCount - 1 == position of full tree size // hard code this, as will be used often; return ((int[]) tree[length - 1])[(length / 2) - 1]; } public static long sizeOfStructureOnHeap(Object[] tree) { long size = ObjectSizes.sizeOfArray(tree); if (isLeaf(tree)) return size; for (int i = getChildStart(tree); i < getChildEnd(tree); i++) size += sizeOfStructureOnHeap((Object[]) tree[i]); return size; } /** * Checks is the node is a leaf. * * @return {@code true} if the provided node is a leaf, {@code false} if it is a branch. */ public static boolean isLeaf(Object[] node) { // Nodes are disambiguated by the length of the array that represents them: an even number is a branch, odd a leaf return (node.length & 1) == 1; } public static boolean isEmpty(Object[] tree) { return tree == EMPTY_LEAF; } // get the upper bound we should search in for keys in the node static int shallowSize(Object[] node) { if (isLeaf(node)) return sizeOfLeaf(node); else return shallowSizeOfBranch(node); } static int sizeOfLeaf(Object[] leaf) { int len = leaf.length; return leaf[len - 1] == null ? len - 1 : len; } // return the boundary position between keys/children for the branch node // == number of keys, as they are indexed from zero static int shallowSizeOfBranch(Object[] branch) { return (branch.length / 2) - 1; } /** * @return first index in a branch node containing child nodes */ static int childOffset(Object[] branch) { return shallowSizeOfBranch(branch); } /** * @return last index + 1 in a branch node containing child nodes */ static int childEndOffset(Object[] branch) { return branch.length - 1; } public static int depth(Object[] tree) { int depth = 1; while (!isLeaf(tree)) { depth++; tree = (Object[]) tree[getKeyEnd(tree)]; } return depth; } /** * Fill the target array with the contents of the provided subtree, in ascending order, starting at targetOffset * * @param tree source * @param target array * @param targetOffset offset in target array * @return number of items copied (size of tree) */ public static int toArray(Object[] tree, Object[] target, int targetOffset) { return toArray(tree, 0, size(tree), target, targetOffset); } public static int toArray(Object[] tree, int treeStart, int treeEnd, Object[] target, int targetOffset) { if (isLeaf(tree)) { int count = treeEnd - treeStart; System.arraycopy(tree, treeStart, target, targetOffset, count); return count; } int newTargetOffset = targetOffset; int childCount = getChildCount(tree); int childOffset = getChildStart(tree); for (int i = 0; i < childCount; i++) { int childStart = treeIndexOffsetOfChild(tree, i); int childEnd = treeIndexOfBranchKey(tree, i); if (childStart <= treeEnd && childEnd >= treeStart) { newTargetOffset += toArray((Object[]) tree[childOffset + i], max(0, treeStart - childStart), min(childEnd, treeEnd) - childStart, target, newTargetOffset); if (treeStart <= childEnd && treeEnd > childEnd) // this check will always fail for the non-existent key target[newTargetOffset++] = tree[i]; } } return newTargetOffset - targetOffset; } /** * An efficient transformAndFilter implementation suitable for a tree consisting of a single leaf root * NOTE: codewise *identical* to {@link #transformAndFilterLeaf(Object[], BiFunction, Object)} */ private static Object[] transformAndFilterLeaf(Object[] leaf, Function apply) { int i = 0, sz = sizeOfLeaf(leaf); I in; O out; do // optimistic loop, looking for first point transformation modifies the input (if any) { in = (I) leaf[i]; out = apply.apply(in); } while (in == out && ++i < sz); // in == out -> i == sz // otherwise in == leaf[i] int identicalUntil = i; if (out == null && ++i < sz) { // optimistic loop, looking for first key {@code apply} modifies without removing it (if any) do { in = (I) leaf[i]; out = apply.apply(in); } while (null == out && ++i < sz); } // out == null -> i == sz // otherwise out == apply.apply(leaf[i]) if (i == sz) { // if we have reached the end of the input, we're either: // 1) returning input unmodified; or // 2) copying some (possibly empty) prefix of it if (identicalUntil == sz) return leaf; if (identicalUntil == 0) return empty(); Object[] copy = new Object[identicalUntil | 1]; System.arraycopy(leaf, 0, copy, 0, identicalUntil); return copy; } try (FastBuilder builder = fastBuilder()) { // otherwise copy the initial part that was unmodified, insert the non-null modified key, and continue if (identicalUntil > 0) builder.leaf().copyNoOverflow(leaf, 0, identicalUntil); builder.leaf().addKeyNoOverflow(out); while (++i < sz) { in = (I) leaf[i]; out = apply.apply(in); if (out != null) builder.leaf().addKeyNoOverflow(out); } return builder.build(); } } /** * Takes a tree and transforms it using the provided function, filtering out any null results. * The result of any transformation must sort identically as their originals, wrt other results. *

* If no modifications are made, the original is returned. * NOTE: codewise *identical* to {@link #transformAndFilter(Object[], Function)} */ public static Object[] transformAndFilter(Object[] tree, BiFunction apply, I2 param) { if (isEmpty(tree)) return tree; if (isLeaf(tree)) return transformAndFilterLeaf(tree, apply, param); try (BiTransformer transformer = BiTransformer.get(apply, param)) { return transformer.apply(tree); } } /** * Takes a tree and transforms it using the provided function, filtering out any null results. * The result of any transformation must sort identically as their originals, wrt other results. *

* If no modifications are made, the original is returned. *

* An efficient transformAndFilter implementation suitable for a tree consisting of a single leaf root * NOTE: codewise *identical* to {@link #transformAndFilter(Object[], BiFunction, Object)} */ public static Object[] transformAndFilter(Object[] tree, Function apply) { if (isEmpty(tree)) return tree; if (isLeaf(tree)) return transformAndFilterLeaf(tree, apply); try (Transformer transformer = Transformer.get(apply)) { return transformer.apply(tree); } } /** * An efficient transformAndFilter implementation suitable for a tree consisting of a single leaf root * NOTE: codewise *identical* to {@link #transformAndFilterLeaf(Object[], Function)} */ private static Object[] transformAndFilterLeaf(Object[] leaf, BiFunction apply, I2 param) { int i = 0, sz = sizeOfLeaf(leaf); I in; O out; do // optimistic loop, looking for first point transformation modifies the input (if any) { in = (I) leaf[i]; out = apply.apply(in, param); } while (in == out && ++i < sz); // in == out -> i == sz // otherwise in == leaf[i] int identicalUntil = i; if (out == null && ++i < sz) { // optimistic loop, looking for first key {@code apply} modifies without removing it (if any) do { in = (I) leaf[i]; out = apply.apply(in, param); } while (null == out && ++i < sz); } // out == null -> i == sz // otherwise out == apply.apply(leaf[i]) if (i == sz) { // if we have reached the end of the input, we're either: // 1) returning input unmodified; or // 2) copying some (possibly empty) prefix of it if (identicalUntil == sz) return leaf; if (identicalUntil == 0) return empty(); Object[] copy = new Object[identicalUntil | 1]; System.arraycopy(leaf, 0, copy, 0, identicalUntil); return copy; } try (FastBuilder builder = fastBuilder()) { // otherwise copy the initial part that was unmodified, insert the non-null modified key, and continue if (identicalUntil > 0) builder.leaf().copyNoOverflow(leaf, 0, identicalUntil); builder.leaf().addKeyNoOverflow(out); while (++i < sz) { in = (I) leaf[i]; out = apply.apply(in, param); if (out != null) builder.leaf().addKeyNoOverflow(out); } return builder.build(); } } /** * Takes a tree and transforms it using the provided function. * The result of any transformation must sort identically as their originals, wrt other results. *

* If no modifications are made, the original is returned. */ public static Object[] transform(Object[] tree, Function function) { if (isEmpty(tree)) // isEmpty determined by identity; must return input return tree; if (isLeaf(tree)) // escape hatch for fast leaf transformation return transformLeaf(tree, function); Object[] result = tree; // optimistically assume we'll return our input unmodified int keyCount = shallowSizeOfBranch(tree); for (int i = 0; i < keyCount; ++i) { // operate on a pair of (child,key) each loop Object[] curChild = (Object[]) tree[keyCount + i]; Object[] updChild = transform(curChild, function); Object curKey = tree[i]; Object updKey = function.apply((I) curKey); if (result == tree) { if (curChild == updChild && curKey == updKey) continue; // if output still same as input, loop // otherwise initialise output to a copy of input up to this point result = transformCopyBranchHelper(tree, keyCount, i, i); } result[keyCount + i] = updChild; result[i] = updKey; } // final unrolled copy of loop for last child only (unbalanced with keys) Object[] curChild = (Object[]) tree[2 * keyCount]; Object[] updChild = transform(curChild, function); if (result == tree) { if (curChild == updChild) return tree; result = transformCopyBranchHelper(tree, keyCount, keyCount, keyCount); } result[2 * keyCount] = updChild; result[2 * keyCount + 1] = tree[2 * keyCount + 1]; // take the original sizeMap, as we are exactly the same shape return result; } // create a copy of a branch, with the exact same size, copying the specified number of keys and children private static Object[] transformCopyBranchHelper(Object[] branch, int keyCount, int copyKeyCount, int copyChildCount) { Object[] result = new Object[branch.length]; System.arraycopy(branch, 0, result, 0, copyKeyCount); System.arraycopy(branch, keyCount, result, keyCount, copyChildCount); return result; } // an efficient transformAndFilter implementation suitable for a tree consisting of a single leaf root private static Object[] transformLeaf(Object[] leaf, Function apply) { Object[] result = leaf; // optimistically assume we'll return our input unmodified int size = sizeOfLeaf(leaf); for (int i = 0; i < size; ++i) { Object current = leaf[i]; Object updated = apply.apply((I) current); if (result == leaf) { if (current == updated) continue; // if output still same as input, loop // otherwise initialise output to a copy of input up to this point result = new Object[leaf.length]; System.arraycopy(leaf, 0, result, 0, i); } result[i] = updated; } return result; } public static boolean equals(Object[] a, Object[] b) { return size(a) == size(b) && Iterators.elementsEqual(iterator(a), iterator(b)); } public static int hashCode(Object[] btree) { // we can't just delegate to Arrays.deepHashCode(), // because two equivalent trees may be represented by differently shaped trees int result = 1; for (Object v : iterable(btree)) result = 31 * result + Objects.hashCode(v); return result; } public static String toString(Object[] btree) { return appendBranchOrLeaf(new StringBuilder().append('['), btree).append(']').toString(); } private static StringBuilder appendBranchOrLeaf(StringBuilder builder, Object[] node) { return isLeaf(node) ? appendLeaf(builder, node) : appendBranch(builder, node); } private static StringBuilder appendBranch(StringBuilder builder, Object[] branch) { int childCount = branch.length / 2; int keyCount = childCount - 1; // add keys for (int i = 0; i < keyCount; i++) { if (i != 0) builder.append(", "); builder.append(branch[i]); } // add children for (int i = keyCount, m = branch.length - 1; i < m; i++) { builder.append(", "); appendBranchOrLeaf(builder, (Object[]) branch[i]); } // add sizeMap builder.append(", ").append(Arrays.toString((int[]) branch[branch.length - 1])); return builder; } private static StringBuilder appendLeaf(StringBuilder builder, Object[] leaf) { return builder.append(Arrays.toString(leaf)); } /** * tree index => index of key wrt all items in the tree laid out serially *

* This version of the method permits requesting out-of-bounds indexes, -1 and size * * @param root to calculate tree index within * @param keyIndex root-local index of key to calculate tree-index * @return the number of items preceding the key in the whole tree of root */ public static int treeIndexOfKey(Object[] root, int keyIndex) { if (isLeaf(root)) return keyIndex; int[] sizeMap = getSizeMap(root); if ((keyIndex >= 0) & (keyIndex < sizeMap.length)) return sizeMap[keyIndex]; // we support asking for -1 or size, so that we can easily use this for iterator bounds checking if (keyIndex < 0) return -1; return sizeMap[keyIndex - 1] + 1; } /** * @param keyIndex node-local index of the key to calculate index of * @return keyIndex; this method is here only for symmetry and clarity */ public static int treeIndexOfLeafKey(int keyIndex) { return keyIndex; } /** * @param root to calculate tree-index within * @param keyIndex root-local index of key to calculate tree-index of * @return the number of items preceding the key in the whole tree of root */ public static int treeIndexOfBranchKey(Object[] root, int keyIndex) { return lookupSizeMap(root, keyIndex); } /** * @param root to calculate tree-index within * @param childIndex root-local index of *child* to calculate tree-index of * @return the number of items preceding the child in the whole tree of root */ public static int treeIndexOffsetOfChild(Object[] root, int childIndex) { if (childIndex == 0) return 0; return 1 + lookupSizeMap(root, childIndex - 1); } public static Builder builder(Comparator comparator) { return new Builder<>(comparator); } public static Builder builder(Comparator comparator, int initialCapacity) { return new Builder<>(comparator, initialCapacity); } public static class Builder { // a user-defined bulk resolution, to be applied manually via resolve() public static interface Resolver { // can return a different output type to input, so long as sort order is maintained // if a resolver is present, this method will be called for every sequence of equal inputs // even those with only one item Object resolve(Object[] array, int lb, int ub); } // a user-defined resolver that is applied automatically on encountering two duplicate values public static interface QuickResolver { // can return a different output type to input, so long as sort order is maintained // if a resolver is present, this method will be called for every sequence of equal inputs // even those with only one item V resolve(V a, V b); } Comparator comparator; Object[] values; int count; boolean detected = true; // true if we have managed to cheaply ensure sorted (+ filtered, if resolver == null) as we have added boolean auto = true; // false if the user has promised to enforce the sort order and resolve any duplicates QuickResolver quickResolver; protected Builder(Comparator comparator) { this(comparator, 16); } protected Builder(Comparator comparator, int initialCapacity) { if (initialCapacity == 0) initialCapacity = 16; this.comparator = comparator; this.values = new Object[initialCapacity]; } @VisibleForTesting public Builder() { this.values = new Object[16]; } private Builder(Builder builder) { this.comparator = builder.comparator; this.values = Arrays.copyOf(builder.values, builder.values.length); this.count = builder.count; this.detected = builder.detected; this.auto = builder.auto; this.quickResolver = builder.quickResolver; } /** * Creates a copy of this {@code Builder}. * * @return a copy of this {@code Builder}. */ public Builder copy() { return new Builder<>(this); } public Builder setQuickResolver(QuickResolver quickResolver) { this.quickResolver = quickResolver; return this; } public void reuse() { reuse(comparator); } public void reuse(Comparator comparator) { this.comparator = comparator; Arrays.fill(values, null); count = 0; detected = true; } public Builder auto(boolean auto) { this.auto = auto; return this; } public Builder add(V v) { if (count == values.length) values = Arrays.copyOf(values, count * 2); Object[] values = this.values; int prevCount = this.count++; values[prevCount] = v; if (auto && detected && prevCount > 0) { V prev = (V) values[prevCount - 1]; int c = comparator.compare(prev, v); if (c == 0 && auto) { count = prevCount; if (quickResolver != null) values[prevCount - 1] = quickResolver.resolve(prev, v); } else if (c > 0) { detected = false; } } return this; } public Builder addAll(Collection add) { if (auto && add instanceof SortedSet && equalComparators(comparator, ((SortedSet) add).comparator())) { // if we're a SortedSet, permit quick order-preserving addition of items // if we collect all duplicates, don't bother as merge will necessarily be more expensive than sorting at end return mergeAll(add, add.size()); } detected = false; if (values.length < count + add.size()) values = Arrays.copyOf(values, max(count + add.size(), count * 2)); for (V v : add) values[count++] = v; return this; } private static boolean equalComparators(Comparator a, Comparator b) { return a == b || (isNaturalComparator(a) && isNaturalComparator(b)); } private static boolean isNaturalComparator(Comparator a) { return a == null || a == Comparator.naturalOrder() || a == Ordering.natural(); } // iter must be in sorted order! private Builder mergeAll(Iterable add, int addCount) { assert auto; // ensure the existing contents are in order autoEnforce(); int curCount = count; // we make room for curCount * 2 + addCount, so that we can copy the current values to the end // if necessary for continuing the merge, and have the new values directly after the current value range if (values.length < curCount * 2 + addCount) values = Arrays.copyOf(values, max(curCount * 2 + addCount, curCount * 3)); if (add instanceof BTreeSet) { // use btree set's fast toArray method, to append directly ((BTreeSet) add).toArray(values, curCount); } else { // consider calling toArray() and System.arraycopy int i = curCount; for (V v : add) values[i++] = v; } return mergeAll(addCount); } private Builder mergeAll(int addCount) { Object[] a = values; int addOffset = count; int i = 0, j = addOffset; int curEnd = addOffset, addEnd = addOffset + addCount; // save time in cases where we already have a subset, by skipping dir while (i < curEnd && j < addEnd) { V ai = (V) a[i], aj = (V) a[j]; // in some cases, such as Columns, we may have identity supersets, so perform a cheap object-identity check int c = ai == aj ? 0 : comparator.compare(ai, aj); if (c > 0) break; else if (c == 0) { if (quickResolver != null) a[i] = quickResolver.resolve(ai, aj); j++; } i++; } if (j == addEnd) return this; // already a superset of the new values // otherwise, copy the remaining existing values to the very end, freeing up space for merge result int newCount = i; System.arraycopy(a, i, a, addEnd, count - i); curEnd = addEnd + (count - i); i = addEnd; while (i < curEnd && j < addEnd) { V ai = (V) a[i]; V aj = (V) a[j]; // could avoid one comparison if we cared, but would make this ugly int c = comparator.compare(ai, aj); if (c == 0) { Object newValue = quickResolver == null ? ai : quickResolver.resolve(ai, aj); a[newCount++] = newValue; i++; j++; } else { a[newCount++] = c < 0 ? a[i++] : a[j++]; } } // exhausted one of the inputs; fill in remainder of the other if (i < curEnd) { System.arraycopy(a, i, a, newCount, curEnd - i); newCount += curEnd - i; } else if (j < addEnd) { if (j != newCount) System.arraycopy(a, j, a, newCount, addEnd - j); newCount += addEnd - j; } count = newCount; return this; } public boolean isEmpty() { return count == 0; } public Builder reverse() { assert !auto; int mid = count / 2; for (int i = 0; i < mid; i++) { Object t = values[i]; values[i] = values[count - (1 + i)]; values[count - (1 + i)] = t; } return this; } public Builder sort() { Arrays.sort((V[]) values, 0, count, comparator); return this; } // automatically enforce sorted+filtered private void autoEnforce() { if (!detected && count > 1) { sort(); int prevIdx = 0; V prev = (V) values[0]; for (int i = 1; i < count; i++) { V next = (V) values[i]; if (comparator.compare(prev, next) != 0) values[++prevIdx] = prev = next; else if (quickResolver != null) values[prevIdx] = prev = quickResolver.resolve(prev, next); } count = prevIdx + 1; } detected = true; } public Builder resolve(Resolver resolver) { if (count > 0) { int c = 0; int prev = 0; for (int i = 1; i < count; i++) { if (comparator.compare((V) values[i], (V) values[prev]) != 0) { values[c++] = resolver.resolve((V[]) values, prev, i); prev = i; } } values[c++] = resolver.resolve((V[]) values, prev, count); count = c; } return this; } public Object[] build() { if (auto) autoEnforce(); try (BulkIterator iterator = BulkIterator.of(values, 0)) { return BTree.build(iterator, count, UpdateFunction.noOp()); } } } private static void applyValue(V value, BiConsumer function, A argument) { function.accept(argument, value); } public static void applyLeaf(Object[] btree, BiConsumer function, A argument) { Preconditions.checkArgument(isLeaf(btree)); int limit = getLeafKeyEnd(btree); for (int i = 0; i < limit; i++) applyValue((V) btree[i], function, argument); } /** * Simple method to walk the btree forwards and apply a function till a stop condition is reached *

* Private method * * @param btree * @param function */ public static void apply(Object[] btree, BiConsumer function, A argument) { if (isLeaf(btree)) { applyLeaf(btree, function, argument); return; } int childOffset = getChildStart(btree); int limit = btree.length - 1 - childOffset; for (int i = 0; i < limit; i++) { apply((Object[]) btree[childOffset + i], function, argument); if (i < childOffset) applyValue((V) btree[i], function, argument); } } /** * Simple method to walk the btree forwards and apply a function till a stop condition is reached *

* Private method * * @param btree * @param function */ public static void apply(Object[] btree, Consumer function) { BTree.>apply(btree, Consumer::accept, function); } private static int find(Object[] btree, V from, Comparator comparator) { // find the start index in iteration order Preconditions.checkNotNull(comparator); int keyEnd = getKeyEnd(btree); return Arrays.binarySearch((V[]) btree, 0, keyEnd, from, comparator); } private static boolean isStopSentinel(long v) { return v == Long.MAX_VALUE; } private static long accumulateLeaf(Object[] btree, BiLongAccumulator accumulator, A arg, Comparator comparator, V from, long initialValue) { Preconditions.checkArgument(isLeaf(btree)); long value = initialValue; int limit = getLeafKeyEnd(btree); int startIdx = 0; if (from != null) { int i = find(btree, from, comparator); boolean isExact = i >= 0; startIdx = isExact ? i : (-1 - i); } for (int i = startIdx; i < limit; i++) { value = accumulator.apply(arg, (V) btree[i], value); if (isStopSentinel(value)) break; } return value; } /** * Walk the btree and accumulate a long value using the supplied accumulator function. Iteration will stop if the * accumulator function returns the sentinel values Long.MIN_VALUE or Long.MAX_VALUE *

* If the optional from argument is not null, iteration will start from that value (or the one after it's insertion * point if an exact match isn't found) */ public static long accumulate(Object[] btree, BiLongAccumulator accumulator, A arg, Comparator comparator, V from, long initialValue) { if (isLeaf(btree)) return accumulateLeaf(btree, accumulator, arg, comparator, from, initialValue); long value = initialValue; int childOffset = getChildStart(btree); int startChild = 0; if (from != null) { int i = find(btree, from, comparator); boolean isExact = i >= 0; startChild = isExact ? i + 1 : -1 - i; if (isExact) { value = accumulator.apply(arg, (V) btree[i], value); if (isStopSentinel(value)) return value; from = null; } } int limit = btree.length - 1 - childOffset; for (int i = startChild; i < limit; i++) { value = accumulate((Object[]) btree[childOffset + i], accumulator, arg, comparator, from, value); if (isStopSentinel(value)) break; if (i < childOffset) { value = accumulator.apply(arg, (V) btree[i], value); // stop if a sentinel stop value was returned if (isStopSentinel(value)) break; } if (from != null) from = null; } return value; } public static long accumulate(Object[] btree, LongAccumulator accumulator, Comparator comparator, V from, long initialValue) { return accumulate(btree, LongAccumulator::apply, accumulator, comparator, from, initialValue); } public static long accumulate(Object[] btree, LongAccumulator accumulator, long initialValue) { return accumulate(btree, accumulator, null, null, initialValue); } public static long accumulate(Object[] btree, BiLongAccumulator accumulator, A arg, long initialValue) { return accumulate(btree, accumulator, arg, null, null, initialValue); } /** * Calculate the minimum height needed for this size of tree * * @param size the tree size * @return the minimum height needed for this size of tree */ private static int minHeight(int size) { return heightAtSize2n(size, BRANCH_SHIFT); } private static int heightAtSize2n(int size, int branchShift) { // branch factor = 1 << branchShift // => full size at height = (1 << (branchShift * height)) - 1 // => full size at height + 1 = 1 << (branchShift * height) // => shift(full size at height + 1) = branchShift * height // => shift(full size at height + 1) / branchShift = height int lengthInBinary = 64 - Long.numberOfLeadingZeros(size); return (branchShift - 1 + lengthInBinary) / branchShift; } private static int[][] buildBalancedSizeMaps(int branchShift) { int count = (32 / branchShift) - 1; int childCount = 1 << branchShift; int[][] sizeMaps = new int[count][childCount]; for (int height = 0; height < count; ++height) { int childSize = treeSize2n(height + 1, branchShift); int size = 0; int[] sizeMap = sizeMaps[height]; for (int i = 0; i < childCount; ++i) { sizeMap[i] = size += childSize; size += 1; } } return sizeMaps; } // simply utility to reverse the contents of array[from..to) private static void reverse(Object[] array, int from, int to) { int mid = (from + to) / 2; for (int i = from; i < mid; i++) { int j = to - (1 + i - from); Object tmp = array[i]; array[i] = array[j]; array[j] = tmp; } } // simply utility to reverse the contents of array[from..to) private static void reverse(int[] array, int from, int to) { int mid = (from + to) / 2; for (int i = from; i < mid; i++) { int j = to - (1 + i - from); int tmp = array[i]; array[i] = array[j]; array[j] = tmp; } } /** * Mutate an array of child sizes into a cumulative sizeMap, returning the total size */ private static int sizesToSizeMap(int[] sizeMap) { int total = sizeMap[0]; for (int i = 1; i < sizeMap.length; ++i) sizeMap[i] = total += 1 + sizeMap[i]; return total; } private static int sizesToSizeMap(int[] sizes, int count) { int total = sizes[0]; for (int i = 1; i < count; ++i) sizes[i] = total += 1 + sizes[i]; return total; } /** * Mutate an array of child sizes into a cumulative sizeMap, returning the total size */ private static void sizeMapToSizes(int[] sizeMap) { for (int i = sizeMap.length; i > 1; --i) sizeMap[i] -= 1 + sizeMap[i - 1]; } /** * A simple utility method to handle a null upper bound that we treat as infinity */ private static int compareWithMaybeInfinity(Comparator comparator, Compare key, Compare ub) { if (ub == null) return -1; return comparator.compare(key, ub); } /** * Perform {@link #exponentialSearch} on {@code in[from..to)}, treating a {@code find} of {@code null} as infinity. */ static int exponentialSearchForMaybeInfinity(Comparator comparator, Object[] in, int from, int to, Compare find) { if (find == null) return -(1 + to); return exponentialSearch(comparator, in, from, to, find); } /** * Equivalent to {@link Arrays#binarySearch}, only more efficient algorithmically for linear merges. * Binary search has worst case complexity {@code O(n.lg n)} for a linear merge, whereas exponential search * has a worst case of {@code O(n)}. However compared to a simple linear merge, the best case for exponential * search is {@code O(lg(n))} instead of {@code O(n)}. */ private static int exponentialSearch(Comparator comparator, Object[] in, int from, int to, Compare find) { int step = 0; while (from + step < to) { int i = from + step; int c = comparator.compare(find, (Compare) in[i]); if (c < 0) { to = i; break; } if (c == 0) return i; from = i + 1; step = step * 2 + 1; // jump in perfect binary search increments } return Arrays.binarySearch((Compare[]) in, from, to, find, comparator); } /** * Perform {@link #exponentialSearch} on {@code in[from..to)}; if the value falls outside of the range of these * elements, test against {@code ub} as though it occurred at position {@code to} * * @return same as {@link Arrays#binarySearch} if {@code find} occurs in the range {@code [in[from]..in[to])}; * otherwise the insertion position {@code -(1+to)} if {@code find} is less than {@code ub}, and {@code -(2+t)} * if it is greater than or equal to. *

* {@code ub} may be {@code null}, representing infinity. */ static int exponentialSearchWithUpperBound(Comparator comparator, Object[] in, int from, int to, Compare ub, Compare find) { int step = 0; while (true) { int i = from + step; if (i >= to) { int c = compareWithMaybeInfinity(comparator, find, ub); if (c >= 0) return -(2 + to); break; } int c = comparator.compare(find, (Compare) in[i]); if (c < 0) { to = i; break; } if (c == 0) return i; from = i + 1; step = step * 2 + 1; // jump in perfect binary search increments } return Arrays.binarySearch((Compare[]) in, from, to, find, comparator); } /** * Compute the size-in-bytes of full trees of cardinality {@code branchFactor^height - 1} */ private static long[] sizeOnHeapOfPerfectTrees(int branchShift) { long[] result = new long[heightAtSize2n(Integer.MAX_VALUE, branchShift)]; int branchFactor = 1 << branchShift; result[0] = branchFactor - 1; for (int i = 1; i < result.length; ++i) result[i] = sizeOnHeapOfPerfectTree(i + 1, branchFactor); return result; } /** * Compute the size-in-bytes of a full tree of cardinality {@code branchFactor^height - 1} * TODO: test */ private static long sizeOnHeapOfPerfectTree(int height, int branchShift) { int branchFactor = 1 << branchShift; long branchSize = ObjectSizes.sizeOfReferenceArray(branchFactor * 2); int branchCount = height == 2 ? 1 : 2 + treeSize2n(height - 2, branchShift); long leafSize = ObjectSizes.sizeOfReferenceArray((branchFactor - 1) | 1); int leafCount = 1 + treeSize2n(height - 1, branchShift); return (branchSize * branchCount) + (leafSize * leafCount); } /** * @return the actual height of {@code tree} */ public static int height(Object[] tree) { if (isLeaf(tree)) return 1; int height = 1; while (!isLeaf(tree)) { height++; tree = (Object[]) tree[shallowSizeOfBranch(tree)]; } return height; } /** * @return the maximum representable size at {@code height}. */ private static int denseSize(int height) { return treeSize2n(height, BRANCH_SHIFT); } /** * @return the maximum representable size at {@code height}. */ private static int checkedDenseSize(int height) { assert height * BRANCH_SHIFT < 32; return denseSize(height); } /** * Computes the number of nodes in a full tree of height {@code height} * and with {@code 2^branchShift} branch factor. * i.e. computes {@code (2^branchShift)^height - 1} */ private static int treeSize2n(int height, int branchShift) { return (1 << (branchShift * height)) - 1; } // TODO: test private static int maxRootHeight(int size) { if (size <= BRANCH_FACTOR) return 1; return 1 + heightAtSize2n((size - 1) / 2, BRANCH_SHIFT - 1); } private static int sizeOfBranch(Object[] branch) { int length = branch.length; // length - 1 == getChildEnd == getPositionOfSizeMap // (length / 2) - 1 == getChildCount - 1 == position of full tree size // hard code this, as will be used often; return ((int[]) branch[length - 1])[(length / 2) - 1]; } /** * Checks if the UpdateFunction is an instance of {@code UpdateFunction.Simple}. */ private static boolean isSimple(UpdateFunction updateF) { return updateF instanceof UpdateFunction.Simple; } /** * @return the size map for the branch node */ static int[] sizeMap(Object[] branch) { return (int[]) branch[branch.length - 1]; } public static long sizeOnHeapOf(Object[] tree) { if (isEmpty(tree)) return 0; long size = ObjectSizes.sizeOfArray(tree); if (isLeaf(tree)) return size; for (int i = childOffset(tree); i < childEndOffset(tree); i++) size += sizeOnHeapOf((Object[]) tree[i]); size += ObjectSizes.sizeOfArray(sizeMap(tree)); // may overcount, since we share size maps return size; } private static long sizeOnHeapOfLeaf(Object[] tree) { if (isEmpty(tree)) return 0; return ObjectSizes.sizeOfArray(tree); } // Arbitrary boundaries private static Object POSITIVE_INFINITY = new Object(); private static Object NEGATIVE_INFINITY = new Object(); /** * simple static wrapper to calls to cmp.compare() which checks if either a or b are Special (i.e. represent an infinity) */ private static int compareWellFormed(Comparator cmp, Object a, Object b) { if (a == b) return 0; if (a == NEGATIVE_INFINITY | b == POSITIVE_INFINITY) return -1; if (b == NEGATIVE_INFINITY | a == POSITIVE_INFINITY) return 1; return cmp.compare((V) a, (V) b); } public static boolean isWellFormed(Object[] btree, Comparator cmp) { return isWellFormedReturnHeight(cmp, btree, true, NEGATIVE_INFINITY, POSITIVE_INFINITY) >= 0; } private static int isWellFormedReturnHeight(Comparator cmp, Object[] node, boolean isRoot, Object min, Object max) { if (isEmpty(node)) return 0; if (cmp != null && !isNodeWellFormed(cmp, node, min, max)) return -1; int keyCount = shallowSize(node); if (keyCount < 1) return -1; if (!isRoot && keyCount < BRANCH_FACTOR / 2 - 1) return -1; if (keyCount >= BRANCH_FACTOR) return -1; if (isLeaf(node)) return 0; int[] sizeMap = sizeMap(node); int size = 0; int childHeight = -1; // compare each child node with the branch element at the head of this node it corresponds with for (int i = childOffset(node); i < childEndOffset(node); i++) { Object[] child = (Object[]) node[i]; Object localmax = i < node.length - 2 ? node[i - childOffset(node)] : max; int height = isWellFormedReturnHeight(cmp, child, false, min, localmax); if (height == -1) return -1; if (childHeight == -1) childHeight = height; if (childHeight != height) return -1; min = localmax; size += size(child); if (sizeMap[i - childOffset(node)] != size) return -1; size += 1; } return childHeight + 1; } private static boolean isNodeWellFormed(Comparator cmp, Object[] node, Object min, Object max) { Object previous = min; int end = shallowSize(node); for (int i = 0; i < end; i++) { Object current = node[i]; if (compareWellFormed(cmp, previous, current) >= 0) return false; previous = current; } return compareWellFormed(cmp, previous, max) < 0; } /** * Build a tree of unknown size, in order. *

* Can be used with {@link #reverseInSitu} to build a tree in reverse. */ public static FastBuilder fastBuilder() { TinyThreadLocalPool.TinyPool> pool = FastBuilder.POOL.get(); FastBuilder builder = (FastBuilder) pool.poll(); if (builder == null) builder = new FastBuilder<>(); builder.pool = pool; return builder; } /** * Base class for AbstractFastBuilder.BranchBuilder, LeafBuilder and AbstractFastBuilder, * containing shared behaviour and declaring some useful abstract methods. */ private static abstract class LeafOrBranchBuilder { final int height; final LeafOrBranchBuilder child; BranchBuilder parent; /** * The current buffer contents (if any) of the leaf or branch - always sized to contain a complete * node of the form being constructed. Always non-null, except briefly during overflow. */ Object[] buffer; /** * The number of keys in our buffer, whether or not we are building a leaf or branch; if we are building * a branch, we will ordinarily have the same number of children as well, except temporarily when finishing * the construction of the node. */ int count; /** * either * 1) an empty leftover buffer from a past usage, which can be used when we exhaust {@code buffer}; or * 2) a full {@code buffer} that has been parked until we next overflow, so we can steal some back * if we finish before reaching MIN_KEYS in {@code buffer} */ Object[] savedBuffer; /** * The key we overflowed on when populating savedBuffer. If null, {@link #savedBuffer} is logically empty. */ Object savedNextKey; LeafOrBranchBuilder(LeafOrBranchBuilder child) { this.height = child == null ? 1 : 1 + child.height; this.child = child; } /** * Do we have enough keys in the builder to construct at least one balanced node? * We could have enough to build two. */ final boolean isSufficient() { return hasOverflow() || count >= MIN_KEYS; } /** * Do we have an already constructed node saved, that we can propagate or redistribute? * This implies we are building two nodes, since {@link #savedNextKey} would overflow {@link #savedBuffer} */ final boolean hasOverflow() { return savedNextKey != null; } /** * Do we have an already constructed node saved AND insufficient keys in our buffer, so * that we need to share the contents of {@link #savedBuffer} with {@link #buffer} to construct * our results? */ final boolean mustRedistribute() { return hasOverflow() && count < MIN_KEYS; } /** * Are we empty, i.e. we have no contents in either {@link #buffer} or {@link #savedBuffer} */ final boolean isEmpty() { return count == 0 && savedNextKey == null; } /** * Drain the contents of this builder and build up to two nodes, as necessary. * If {@code unode != null} and we are building a single node that is identical to it, use {@code unode} instead. * If {@code propagateTo != null} propagate any nodes we build to it. * * @return the last node we construct */ abstract Object[] drainAndPropagate(Object[] unode, BranchBuilder propagateTo); /** * Drain the contents of this builder and build at most one node. * Requires {@code !hasOverflow()} * * @return the node we construct */ abstract Object[] drain(); /** * Complete the build. Drains the node and any used or newly-required parent and returns the root of the * resulting tree. * * @return the root of the constructed tree. */ public Object[] completeBuild() { LeafOrBranchBuilder level = this; while (true) { if (!level.hasOverflow()) return level.drain(); BranchBuilder parent = level.ensureParent(); level.drainAndPropagate(null, parent); if (level.savedBuffer != null) Arrays.fill(level.savedBuffer, null); level = parent; } } /** * Takes a node that would logically occur directly preceding the current buffer contents, * and the key that would separate them in a parent node, and prepends their contents * to the current buffer's contents. This can be used to redistribute already-propagated * contents to a parent in cases where this is convenient (i.e. when transforming) * * @param predecessor directly preceding node * @param predecessorNextKey key that would have separated predecessor from buffer contents */ abstract void prepend(Object[] predecessor, Object predecessorNextKey); /** * Indicates if this builder produces dense nodes, i.e. those that are populated with MAX_KEYS * at every level. Only the last two children of any branch may be non-dense, and in some cases only * the last two nodes in any tier of the tree. *

* This flag switches whether or not we maintain a buffer of sizes, or use the globally shared contents of * DENSE_SIZE_MAPS. */ abstract boolean producesOnlyDense(); /** * Ensure there is a {@code branch.parent}, and return it */ final BranchBuilder ensureParent() { if (parent == null) parent = new BranchBuilder(this); parent.inUse = true; return parent; } /** * Mark a branch builder as utilised, so that we must clear it when resetting any {@link AbstractFastBuilder} * * @return {@code branch} */ static BranchBuilder markUsed(BranchBuilder branch) { branch.inUse = true; return branch; } /** * A utility method for comparing a range of two arrays */ static boolean areIdentical(Object[] a, int aOffset, Object[] b, int bOffset, int count) { for (int i = 0; i < count; ++i) { if (a[i + aOffset] != b[i + bOffset]) return false; } return true; } /** * A utility method for comparing a range of two arrays */ static boolean areIdentical(int[] a, int aOffset, int[] b, int bOffset, int count) { for (int i = 0; i < count; ++i) { if (a[i + aOffset] != b[i + bOffset]) return false; } return true; } } /** * LeafBuilder for methods pertaining specifically to building a leaf in an {@link AbstractFastBuilder}. * Note that {@link AbstractFastBuilder} extends this class directly, however it is convenient to maintain * distinct classes in the hierarchy for clarity of behaviour and intent. */ private static abstract class LeafBuilder extends LeafOrBranchBuilder { long allocated; LeafBuilder() { super(null); buffer = new Object[MAX_KEYS]; } /** * Add {@code nextKey} to the buffer, overflowing if necessary */ public void addKey(Object nextKey) { if (count == MAX_KEYS) overflow(nextKey); else buffer[count++] = nextKey; } /** * Add {@code nextKey} to the buffer; the caller specifying overflow is unnecessary */ public void addKeyNoOverflow(Object nextKey) { buffer[count++] = nextKey; } /** * Add {@code nextKey} to the buffer; the caller specifying overflow is unnecessary */ public void maybeAddKeyNoOverflow(Object nextKey) { buffer[count] = nextKey; count += nextKey != null ? 1 : 0; } /** * Add {@code nextKey} to the buffer; the caller specifying overflow is unnecessary */ public void maybeAddKey(Object nextKey) { if (count == MAX_KEYS) { if (nextKey != null) overflow(nextKey); } else { buffer[count] = nextKey; count += nextKey != null ? 1 : 0; } } /** * Copy the contents of {@code source[from..to)} to {@code buffer}, overflowing as necessary. */ void copy(Object[] source, int offset, int length) { if (count + length > MAX_KEYS) { int copy = MAX_KEYS - count; System.arraycopy(source, offset, buffer, count, copy); offset += copy; // implicitly: count = MAX_KEYS; overflow(source[offset++]); length -= 1 + copy; } System.arraycopy(source, offset, buffer, count, length); count += length; } /** * Copy the contents of {@code source[from..to)} to {@code buffer}; the caller specifying overflow is unnecessary */ void copyNoOverflow(Object[] source, int offset, int length) { System.arraycopy(source, offset, buffer, count, length); count += length; } /** * Copy the contents of the data to {@code buffer}, overflowing as necessary. */ void copy(Object[] source, int offset, int length, UpdateFunction apply) { if (isSimple(apply)) { copy(source, offset, length); return; } if (count + length > MAX_KEYS) { int copy = MAX_KEYS - count; for (int i = 0; i < copy; ++i) buffer[count + i] = apply.insert((Insert) source[offset + i]); offset += copy; // implicitly: leaf().count = MAX_KEYS; overflow(apply.insert((Insert) source[offset++])); length -= 1 + copy; } for (int i = 0; i < length; ++i) buffer[count + i] = apply.insert((Insert) source[offset + i]); count += length; } /** * {@link #buffer} is full, and we need to make room either by populating {@link #savedBuffer}, * propagating its current contents, if any, to {@link #parent} */ void overflow(Object nextKey) { if (hasOverflow()) propagateOverflow(); // precondition: count == MAX_KEYS and savedNextKey == null Object[] newBuffer = savedBuffer; if (newBuffer == null) newBuffer = new Object[MAX_KEYS]; savedBuffer = buffer; savedNextKey = nextKey; buffer = newBuffer; count = 0; } /** * Redistribute the contents of {@link #savedBuffer} into {@link #buffer}, finalise {@link #savedBuffer} and flush upwards. * Invoked when we are building from {@link #buffer}, have insufficient values but a complete leaf in {@link #savedBuffer} * * @return the size of the leaf we flushed to our parent from {@link #savedBuffer} */ Object[] redistributeOverflowAndDrain() { Object[] newLeaf = redistributeAndDrain(savedBuffer, MAX_KEYS, savedNextKey); savedNextKey = null; return newLeaf; } /** * Redistribute the contents of {@link #buffer} and an immediate predecessor into a new leaf, * then construct a new predecessor with the remaining contents and propagate up to our parent * Invoked when we are building from {@link #buffer}, have insufficient values but either a complete * leaf in {@link #savedBuffer} or can exfiltrate one from our parent to redistribute. * * @return the second of the two new leaves */ Object[] redistributeAndDrain(Object[] pred, int predSize, Object predNextKey) { // precondition: savedLeafCount == MAX_KEYS && leaf().count < MIN_KEYS // ensure we have at least MIN_KEYS in leaf().buffer // first shift leaf().buffer and steal some keys from leaf().savedBuffer and leaf().savedBufferNextKey int steal = MIN_KEYS - count; Object[] newLeaf = new Object[MIN_KEYS]; System.arraycopy(pred, predSize - (steal - 1), newLeaf, 0, steal - 1); newLeaf[steal - 1] = predNextKey; System.arraycopy(buffer, 0, newLeaf, steal, count); // then create a leaf out of the remainder of savedBuffer int newPredecessorCount = predSize - steal; Object[] newPredecessor = new Object[newPredecessorCount | 1]; System.arraycopy(pred, 0, newPredecessor, 0, newPredecessorCount); if (allocated >= 0) allocated += ObjectSizes.sizeOfReferenceArray(newPredecessorCount | 1); ensureParent().addChildAndNextKey(newPredecessor, newPredecessorCount, pred[newPredecessorCount]); return newLeaf; } /** * Invoked to fill our {@link #buffer} to >= MIN_KEYS with data ocurring before {@link #buffer}; * possibly instead fills {@link #savedBuffer} * * @param pred directly preceding node * @param predNextKey key that would have separated predecessor from buffer contents */ void prepend(Object[] pred, Object predNextKey) { assert !hasOverflow(); int predSize = sizeOfLeaf(pred); int newKeys = 1 + predSize; if (newKeys + count <= MAX_KEYS) { System.arraycopy(buffer, 0, buffer, newKeys, count); System.arraycopy(pred, 0, buffer, 0, predSize); buffer[predSize] = predNextKey; count += newKeys; } else { if (savedBuffer == null) savedBuffer = new Object[MAX_KEYS]; System.arraycopy(pred, 0, savedBuffer, 0, predSize); if (predSize == MAX_KEYS) { savedNextKey = predNextKey; } else { int removeKeys = MAX_KEYS - predSize; count -= removeKeys; savedBuffer[predSize] = predNextKey; System.arraycopy(buffer, 0, savedBuffer, predSize + 1, MAX_KEYS - newKeys); savedNextKey = buffer[MAX_KEYS - newKeys]; System.arraycopy(buffer, removeKeys, buffer, 0, count); } } } /** * Invoked when we want to add a key to the leaf buffer, but it is full */ void propagateOverflow() { // propagate the leaf we have saved in savedBuffer // precondition: savedLeafCount == MAX_KEYS if (allocated >= 0) allocated += ObjectSizes.sizeOfReferenceArray(MAX_KEYS); ensureParent().addChildAndNextKey(savedBuffer, MAX_KEYS, savedNextKey); savedBuffer = null; savedNextKey = null; } /** * Construct a new leaf from the contents of {@link #buffer}, unless the contents have not changed * from {@code unode}, in which case return {@code unode} to avoid allocating unnecessary objects. * * This is only called when we have enough data to complete the node, i.e. we have MIN_KEYS or more items added * or the node is the BTree's root. */ Object[] drainAndPropagate(Object[] unode, BranchBuilder propagateTo) { Object[] leaf; int sizeOfLeaf; if (mustRedistribute()) { // we have too few items, so spread the two buffers across two new nodes leaf = redistributeOverflowAndDrain(); sizeOfLeaf = MIN_KEYS; } else if (!hasOverflow() && unode != null && count == sizeOfLeaf(unode) && areIdentical(buffer, 0, unode, 0, count)) { // we have exactly the same contents as the original node, so reuse it leaf = unode; sizeOfLeaf = count; } else { // we have maybe one saved full buffer, and one buffer with sufficient contents to copy if (hasOverflow()) propagateOverflow(); sizeOfLeaf = count; leaf = drain(); if (allocated >= 0 && sizeOfLeaf > 0) allocated += ObjectSizes.sizeOfReferenceArray(sizeOfLeaf | 1) - (unode == null ? 0 : sizeOnHeapOfLeaf(unode)); } count = 0; if (propagateTo != null) propagateTo.addChild(leaf, sizeOfLeaf); return leaf; } /** * Construct a new leaf from the contents of {@code leaf().buffer}, assuming that the node does not overflow. */ Object[] drain() { // the number of children here may be smaller than MIN_KEYS if this is the root node assert !hasOverflow(); if (count == 0) return empty(); Object[] newLeaf = new Object[count | 1]; System.arraycopy(buffer, 0, newLeaf, 0, count); count = 0; return newLeaf; } } static class BranchBuilder extends LeafOrBranchBuilder { final LeafBuilder leaf; /** * sizes of the children in {@link #buffer}. If null, we only produce dense nodes. */ int[] sizes; /** * sizes of the children in {@link #savedBuffer} */ int[] savedSizes; /** * marker to limit unnecessary work with unused levels, esp. on reset */ boolean inUse; BranchBuilder(LeafOrBranchBuilder child) { super(child); buffer = new Object[2 * (MAX_KEYS + 1)]; if (!child.producesOnlyDense()) sizes = new int[MAX_KEYS + 1]; this.leaf = child instanceof LeafBuilder ? (LeafBuilder) child : ((BranchBuilder) child).leaf; } /** * Ensure there is room to add another key to {@code branchBuffers[branchIndex]}, and add it; * invoke {@link #overflow} if necessary */ void addKey(Object key) { if (count == MAX_KEYS) overflow(key); else buffer[count++] = key; } /** * To be invoked when there's a key already inserted to the buffer that requires a corresponding * right-hand child, for which the buffers are sized to ensure there is always room. */ void addChild(Object[] child, int sizeOfChild) { buffer[MAX_KEYS + count] = child; recordSizeOfChild(sizeOfChild); } void recordSizeOfChild(int sizeOfChild) { if (sizes != null) sizes[count] = sizeOfChild; } /** * See {@link BranchBuilder#addChild(Object[], int)} */ void addChild(Object[] child) { addChild(child, sizes == null ? 0 : size(child)); } /** * Insert a new child into a parent branch, when triggered by {@code overflowLeaf} or {@code overflowBranch} */ void addChildAndNextKey(Object[] newChild, int newChildSize, Object nextKey) { // we should always have room for a child to the right of any key we have previously inserted buffer[MAX_KEYS + count] = newChild; recordSizeOfChild(newChildSize); // but there may not be room for another key addKey(nextKey); } /** * Invoked when we want to add a key to the leaf buffer, but it is full */ void propagateOverflow() { // propagate the leaf we have saved in leaf().savedBuffer if (leaf.allocated >= 0) leaf.allocated += ObjectSizes.sizeOfReferenceArray(2 * (1 + MAX_KEYS)); int size = setOverflowSizeMap(savedBuffer, MAX_KEYS); ensureParent().addChildAndNextKey(savedBuffer, size, savedNextKey); savedBuffer = null; savedNextKey = null; } /** * Invoked when a branch already contains {@code MAX_KEYS}, and another child is ready to be added. * Creates a new neighbouring node containing MIN_KEYS items, shifting back the remaining MIN_KEYS+1 * items to the start of the buffer(s). */ void overflow(Object nextKey) { if (hasOverflow()) propagateOverflow(); Object[] restoreBuffer = savedBuffer; int[] restoreSizes = savedSizes; savedBuffer = buffer; savedSizes = sizes; savedNextKey = nextKey; sizes = restoreSizes == null && savedSizes != null ? new int[MAX_KEYS + 1] : restoreSizes; buffer = restoreBuffer == null ? new Object[2 * (MAX_KEYS + 1)] : restoreBuffer; count = 0; } /** * Redistribute the contents of branch.savedBuffer into branch.buffer, finalise savedBuffer and flush upwards. * Invoked when we are building from branch, have insufficient values but a complete branch in savedBuffer. * * @return the size of the branch we flushed to our parent from savedBuffer */ Object[] redistributeOverflowAndDrain() { // now ensure we have at least MIN_KEYS in buffer // both buffer and savedBuffer should be balanced, so that we have count+1 and MAX_KEYS+1 children respectively // we need to utilise savedNextKey, so we want to take {@code steal-1} keys from savedBuffer, {@code steal) children // and the dangling key we use in place of savedNextKey for our parent key. int steal = MIN_KEYS - count; Object[] newBranch = new Object[2 * (MIN_KEYS + 1)]; System.arraycopy(savedBuffer, MAX_KEYS - (steal - 1), newBranch, 0, steal - 1); newBranch[steal - 1] = savedNextKey; System.arraycopy(buffer, 0, newBranch, steal, count); System.arraycopy(savedBuffer, 2 * MAX_KEYS + 1 - steal, newBranch, MIN_KEYS, steal); System.arraycopy(buffer, MAX_KEYS, newBranch, MIN_KEYS + steal, count + 1); setRedistributedSizeMap(newBranch, steal); // then create a branch out of the remainder of savedBuffer int savedBranchCount = MAX_KEYS - steal; Object[] savedBranch = new Object[2 * (savedBranchCount + 1)]; System.arraycopy(savedBuffer, 0, savedBranch, 0, savedBranchCount); System.arraycopy(savedBuffer, MAX_KEYS, savedBranch, savedBranchCount, savedBranchCount + 1); int savedBranchSize = setOverflowSizeMap(savedBranch, savedBranchCount); if (leaf.allocated >= 0) leaf.allocated += ObjectSizes.sizeOfReferenceArray(2 * (1 + savedBranchCount)); ensureParent().addChildAndNextKey(savedBranch, savedBranchSize, savedBuffer[savedBranchCount]); savedNextKey = null; return newBranch; } /** * See {@link LeafOrBranchBuilder#prepend(Object[], Object)} */ void prepend(Object[] pred, Object predNextKey) { assert !hasOverflow(); // assumes sizes != null, since only makes sense to use this method in that context int predKeys = shallowSizeOfBranch(pred); int[] sizeMap = (int[]) pred[2 * predKeys + 1]; int newKeys = 1 + predKeys; if (newKeys + count <= MAX_KEYS) { System.arraycopy(buffer, 0, buffer, newKeys, count); System.arraycopy(sizes, 0, sizes, newKeys, count + 1); System.arraycopy(buffer, MAX_KEYS, buffer, MAX_KEYS + newKeys, count + 1); System.arraycopy(pred, 0, buffer, 0, predKeys); buffer[predKeys] = predNextKey; System.arraycopy(pred, predKeys, buffer, MAX_KEYS, predKeys + 1); copySizeMapToSizes(sizeMap, 0, sizes, 0, predKeys + 1); count += newKeys; } else { if (savedBuffer == null) { savedBuffer = new Object[2 * (1 + MAX_KEYS)]; savedSizes = new int[1 + MAX_KEYS]; } System.arraycopy(pred, 0, savedBuffer, 0, predKeys); System.arraycopy(pred, predKeys, savedBuffer, MAX_KEYS, predKeys + 1); copySizeMapToSizes(sizeMap, 0, savedSizes, 0, predKeys + 1); if (newKeys == MAX_KEYS + 1) { savedNextKey = predNextKey; } else { int removeKeys = (1 + MAX_KEYS - newKeys); int remainingKeys = count - removeKeys; savedBuffer[predKeys] = predNextKey; System.arraycopy(buffer, 0, savedBuffer, newKeys, MAX_KEYS - newKeys); savedNextKey = buffer[MAX_KEYS - newKeys]; System.arraycopy(sizes, 0, savedSizes, newKeys, MAX_KEYS + 1 - newKeys); System.arraycopy(buffer, MAX_KEYS, savedBuffer, MAX_KEYS + newKeys, MAX_KEYS + 1 - newKeys); System.arraycopy(buffer, removeKeys, buffer, 0, remainingKeys); System.arraycopy(buffer, MAX_KEYS + removeKeys, buffer, MAX_KEYS, remainingKeys + 1); System.arraycopy(sizes, removeKeys, sizes, 0, remainingKeys + 1); count = remainingKeys; } } } boolean producesOnlyDense() { return sizes == null; } /** * Construct a new branch from the contents of {@code branchBuffers[branchIndex]}, unless the contents have * not changed from {@code unode}, in which case return {@code unode} to avoid allocating unnecessary objects. * * This is only called when we have enough data to complete the node, i.e. we have MIN_KEYS or more items added * or the node is the BTree's root. */ Object[] drainAndPropagate(Object[] unode, BranchBuilder propagateTo) { int sizeOfBranch; Object[] branch; if (mustRedistribute()) { branch = redistributeOverflowAndDrain(); sizeOfBranch = sizeOfBranch(branch); } else { int usz = unode != null ? shallowSizeOfBranch(unode) : -1; if (!hasOverflow() && usz == count && areIdentical(buffer, 0, unode, 0, usz) && areIdentical(buffer, MAX_KEYS, unode, usz, usz + 1)) { branch = unode; sizeOfBranch = sizeOfBranch(branch); } else { if (hasOverflow()) propagateOverflow(); // the number of children here may be smaller than MIN_KEYS if this is the root node, but there must // be at least one key / two children. assert count > 0; branch = new Object[2 * (count + 1)]; System.arraycopy(buffer, 0, branch, 0, count); System.arraycopy(buffer, MAX_KEYS, branch, count, count + 1); sizeOfBranch = setDrainSizeMap(unode, usz, branch, count); } } count = 0; if (propagateTo != null) propagateTo.addChild(branch, sizeOfBranch); return branch; } /** * Construct a new branch from the contents of {@code buffer}, assuming that the node does not overflow. */ Object[] drain() { assert !hasOverflow(); int keys = count; count = 0; Object[] branch = new Object[2 * (keys + 1)]; if (keys == MAX_KEYS) { Object[] tmp = buffer; buffer = branch; branch = tmp; } else { System.arraycopy(buffer, 0, branch, 0, keys); System.arraycopy(buffer, MAX_KEYS, branch, keys, keys + 1); } setDrainSizeMap(null, -1, branch, keys); return branch; } /** * Compute (or fetch from cache) and set the sizeMap in {@code branch}, knowing that it * was constructed from for the contents of {@code buffer}. *

* For {@link FastBuilder} these are mostly the same, so they are fetched from a global cache and * resized accordingly, but for {@link AbstractUpdater} we maintain a buffer of sizes. */ int setDrainSizeMap(Object[] original, int keysInOriginal, Object[] branch, int keysInBranch) { if (producesOnlyDense()) return setImperfectSizeMap(branch, keysInBranch); // first convert our buffer contents of sizes to represent a sizeMap int size = sizesToSizeMap(this.sizes, keysInBranch + 1); // then attempt to reuse the sizeMap from the original node, by comparing the buffer's contents with it int[] sizeMap; if (keysInOriginal != keysInBranch || !areIdentical(sizeMap = sizeMap(original), 0, this.sizes, 0, keysInBranch + 1)) { // if we cannot, then we either take the buffer wholesale and replace its buffer, or copy a prefix sizeMap = this.sizes; if (keysInBranch < MAX_KEYS) sizeMap = Arrays.copyOf(sizeMap, keysInBranch + 1); else this.sizes = new int[MAX_KEYS + 1]; } branch[2 * keysInBranch + 1] = sizeMap; return size; } /** * Compute (or fetch from cache) and set the sizeMap in {@code branch}, knowing that it * was constructed from for the contents of {@code savedBuffer}. *

* For {@link FastBuilder} these are always the same size, so they are fetched from a global cache, * but for {@link AbstractUpdater} we maintain a buffer of sizes. * * @return the size of {@code branch} */ int setOverflowSizeMap(Object[] branch, int keys) { if (producesOnlyDense()) { int[] sizeMap = DENSE_SIZE_MAPS[height - 2]; if (keys < MAX_KEYS) sizeMap = Arrays.copyOf(sizeMap, keys + 1); branch[2 * keys + 1] = sizeMap; return keys < MAX_KEYS ? sizeMap[keys] : checkedDenseSize(height + 1); } else { int[] sizes = savedSizes; if (keys < MAX_KEYS) sizes = Arrays.copyOf(sizes, keys + 1); else savedSizes = null; branch[2 * keys + 1] = sizes; return sizesToSizeMap(sizes); } } /** * Compute (or fetch from cache) and set the sizeMap in {@code branch}, knowing that it * was constructed from the contents of both {@code savedBuffer} and {@code buffer} *

* For {@link FastBuilder} these are mostly the same size, so they are fetched from a global cache * and only the last items updated, but for {@link AbstractUpdater} we maintain a buffer of sizes. */ void setRedistributedSizeMap(Object[] branch, int steal) { if (producesOnlyDense()) { setImperfectSizeMap(branch, MIN_KEYS); } else { int[] sizeMap = new int[MIN_KEYS + 1]; System.arraycopy(sizes, 0, sizeMap, steal, count + 1); System.arraycopy(savedSizes, MAX_KEYS + 1 - steal, sizeMap, 0, steal); branch[2 * MIN_KEYS + 1] = sizeMap; sizesToSizeMap(sizeMap); } } /** * Like {@link #setOverflowSizeMap}, but used for building the sizeMap of a node whose * last two children may have had their contents redistributed; uses the perfect size map * for all but the final two children, and queries the size of the last children directly */ private int setImperfectSizeMap(Object[] branch, int keys) { int[] sizeMap = Arrays.copyOf(DENSE_SIZE_MAPS[height - 2], keys + 1); int size = keys == 1 ? 0 : 1 + sizeMap[keys - 2]; sizeMap[keys - 1] = size += size((Object[]) branch[2 * keys - 1]); sizeMap[keys] = size += 1 + size((Object[]) branch[2 * keys]); branch[2 * keys + 1] = sizeMap; return size; } /** * Copy the contents of {@code unode} into {@code branchBuffers[branchIndex]}, * starting at the child before key with index {@code offset} up to and * including the key with index {@code offset + length - 1}. */ void copyPreceding(Object[] unode, int usz, int offset, int length) { int[] uszmap = sizeMap(unode); if (count + length > MAX_KEYS) { // we will overflow, so copy to MAX_KEYS and trigger overflow int copy = MAX_KEYS - count; copyPrecedingNoOverflow(unode, usz, uszmap, offset, copy); offset += copy; // copy last child that fits buffer[MAX_KEYS + MAX_KEYS] = unode[usz + offset]; sizes[MAX_KEYS] = uszmap[offset] - (offset > 0 ? (1 + uszmap[offset - 1]) : 0); overflow(unode[offset]); length -= 1 + copy; ++offset; } copyPrecedingNoOverflow(unode, usz, uszmap, offset, length); } /** * Copy the contents of {@code unode} into {@code branchBuffers[branchIndex]}, * between keys {@code from} and {@code to}, with the caller declaring overflow is unnecessary. * {@code from} may be {@code -1}, representing the first child only; * all other indices represent the key/child pairs that follow (i.e. a key and its right-hand child). */ private void copyPrecedingNoOverflow(Object[] unode, int usz, int[] uszmap, int offset, int length) { if (length <= 1) { if (length == 0) return; buffer[count] = unode[offset]; buffer[MAX_KEYS + count] = unode[usz + offset]; sizes[count] = uszmap[offset] - (offset > 0 ? (1 + uszmap[offset - 1]) : 0); ++count; } else { System.arraycopy(unode, offset, buffer, count, length); System.arraycopy(unode, usz + offset, buffer, MAX_KEYS + count, length); copySizeMapToSizes(uszmap, offset, sizes, count, length); count += length; } } /** * Copy a region of a cumulative sizeMap into an array of plain sizes */ static void copySizeMapToSizes(int[] in, int inOffset, int[] out, int outOffset, int count) { assert count > 0; if (inOffset == 0) { // we don't need to subtract anything from the first node, so just copy it so we can keep the rest of the loop simple out[outOffset++] = in[inOffset++]; --count; } for (int i = 0; i < count; ++i) out[outOffset + i] = in[inOffset + i] - (1 + in[inOffset + i - 1]); } } /** * Shared parent of {@link FastBuilder} and {@link Updater}, both of which * construct their trees in order without knowing the resultant size upfront. *

* Maintains a simple stack of buffers that we provide utilities to navigate and update. */ private static abstract class AbstractFastBuilder extends LeafBuilder { final boolean producesOnlyDense() { return getClass() == FastBuilder.class; } /** * An aesthetic convenience for declaring when we are interacting with the leaf, instead of invoking {@code this} directly */ final LeafBuilder leaf() { return this; } /** * Clear any references we might still retain, to avoid holding onto memory. *

* While this method is not strictly necessary, it exists to * ensure the implementing classes are aware they must handle it. */ abstract void reset(); } /** * A pooled builder for constructing a tree in-order, and without needing any reconciliation. *

* Constructs whole nodes in place, so that a flush of a complete node can take its buffer entirely. * Since we build trees of a predictable shape (i.e. perfectly dense) we do not construct a size map. */ public static class FastBuilder extends AbstractFastBuilder implements AutoCloseable { private static final TinyThreadLocalPool> POOL = new TinyThreadLocalPool<>(); private TinyThreadLocalPool.TinyPool> pool; FastBuilder() { allocated = -1; } // disable allocation tracking public void add(V value) { leaf().addKey(value); } public void add(Object[] from, int offset, int count) { leaf().copy(from, offset, count); } public Object[] build() { return leaf().completeBuild(); } public Object[] buildReverse() { Object[] result = build(); reverseInSitu(result, height(result), false); return result; } @Override public void close() { reset(); pool.offer(this); pool = null; } @Override void reset() { // we clear precisely to leaf().count and branch.count because, in the case of a builder, // if we ever fill the buffer we will consume it entirely for the tree we are building // so the last count should match the number of non-null entries Arrays.fill(leaf().buffer, 0, leaf().count, null); leaf().count = 0; BranchBuilder branch = leaf().parent; while (branch != null && branch.inUse) { Arrays.fill(branch.buffer, 0, branch.count, null); Arrays.fill(branch.buffer, MAX_KEYS, MAX_KEYS + 1 + branch.count, null); branch.count = 0; branch.inUse = false; branch = branch.parent; } } } private static abstract class AbstractUpdater extends AbstractFastBuilder implements AutoCloseable { void reset() { assert leaf().count == 0; clearLeafBuffer(leaf().buffer); if (leaf().savedBuffer != null) Arrays.fill(leaf().savedBuffer, null); BranchBuilder branch = leaf().parent; while (branch != null && branch.inUse) { assert branch.count == 0; clearBranchBuffer(branch.buffer); if (branch.savedBuffer != null && branch.savedBuffer[0] != null) Arrays.fill(branch.savedBuffer, null); // by definition full, if non-empty branch.inUse = false; branch = branch.parent; } } /** * Clear the contents of a branch buffer, aborting once we encounter a null entry * to save time on small trees */ private void clearLeafBuffer(Object[] array) { if (array[0] == null) return; // find first null entry; loop from beginning, to amortise cost over size of working set int i = 1; while (i < array.length && array[i] != null) ++i; Arrays.fill(array, 0, i, null); } /** * Clear the contents of a branch buffer, aborting once we encounter a null entry * to save time on small trees */ private void clearBranchBuffer(Object[] array) { if (array[0] == null) return; // find first null entry; loop from beginning, to amortise cost over size of working set int i = 1; while (i < MAX_KEYS && array[i] != null) ++i; Arrays.fill(array, 0, i, null); Arrays.fill(array, MAX_KEYS, MAX_KEYS + i + 1, null); } } /** * A pooled object for modifying an existing tree with a new (typically smaller) tree. *

* Constructs the new tree around the shape of the existing tree, as though we had performed inserts in * order, copying as much of the original tree as possible. We achieve this by simply merging leaf nodes * up to the immediately following key in an ancestor, maintaining up to two complete nodes in a buffer until * this happens, and flushing any nodes we produce in excess of this immediately into the parent buffer. *

* We construct whole nodes in place, except the size map, so that a flush of a complete node can take its buffer * entirely. *

* Searches within both trees to accelerate the process of modification, instead of performing a simple * iteration over the new tree. */ private static class Updater extends AbstractUpdater implements AutoCloseable { static final TinyThreadLocalPool POOL = new TinyThreadLocalPool<>(); TinyThreadLocalPool.TinyPool pool; // the new tree we navigate linearly, and are always on a key or at the end final SimpleTreeKeysIterator insert = new SimpleTreeKeysIterator<>(); Comparator comparator; UpdateFunction updateF; static Updater get() { TinyThreadLocalPool.TinyPool pool = POOL.get(); Updater updater = pool.poll(); if (updater == null) updater = new Updater<>(); updater.pool = pool; return updater; } /** * Precondition: {@code update} should not be empty. *

* Inserts {@code insert} into {@code update}, after applying {@code updateF} to each item, or matched item pairs. */ Object[] update(Object[] update, Object[] insert, Comparator comparator, UpdateFunction updateF) { this.insert.init(insert); this.updateF = updateF; this.comparator = comparator; this.allocated = isSimple(updateF) ? -1 : 0; int leafDepth = BTree.depth(update) - 1; LeafOrBranchBuilder builder = leaf(); for (int i = 0; i < leafDepth; ++i) builder = builder.ensureParent(); Insert ik = this.insert.next(); ik = updateRecursive(ik, update, null, builder); assert ik == null; Object[] result = builder.completeBuild(); if (allocated > 0) updateF.onAllocatedOnHeap(allocated); return result; } /** * Merge a BTree recursively with the contents of {@code insert} up to the given upper bound. * * @param ik The next key from the inserted data. * @param unode The source branch to update. * @param uub The branch's upper bound * @param builder The builder that will receive the data. It needs to be at the same level of the hierarchy * as the source unode. * @return The next key from the inserted data, >= uub. */ private Insert updateRecursive(Insert ik, Object[] unode, Existing uub, LeafOrBranchBuilder builder) { return builder == leaf() ? updateRecursive(ik, unode, uub, (LeafBuilder) builder) : updateRecursive(ik, unode, uub, (BranchBuilder) builder); } private Insert updateRecursive(Insert ik, Object[] unode, Existing uub, BranchBuilder builder) { int upos = 0; int usz = shallowSizeOfBranch(unode); while (ik != null) { int find = exponentialSearchWithUpperBound(comparator, unode, upos, usz, uub, ik); int c = searchResultToComparison(find); if (find < 0) find = -1 - find; if (find > usz) break; // nothing else needs to be inserted in this branch if (find > upos) builder.copyPreceding(unode, usz, upos, find - upos); final Existing nextUKey = find < usz ? (Existing) unode[find] : uub; final Object[] childUNode = (Object[]) unode[find + usz]; // process next child if (c < 0) { // ik fall inside it -- recursively merge the child with the update, using next key as an upper bound LeafOrBranchBuilder childBuilder = builder.child; ik = updateRecursive(ik, childUNode, nextUKey, childBuilder); childBuilder.drainAndPropagate(childUNode, builder); if (find == usz) // this was the right-most child, branch is complete and we can return immediately return ik; c = ik != null ? comparator.compare(nextUKey, ik) : -1; } else builder.addChild(childUNode); // process next key if (c == 0) { // ik matches next key builder.addKey(updateF.merge(nextUKey, ik)); ik = insert.next(); } else builder.addKey(nextUKey); upos = find + 1; } // copy the rest of the branch and exit if (upos <= usz) { builder.copyPreceding(unode, usz, upos, usz - upos); builder.addChild((Object[]) unode[usz + usz]); } return ik; } private Insert updateRecursive(Insert ik, Object[] unode, Existing uub, LeafBuilder builder) { int upos = 0; int usz = sizeOfLeaf(unode); Existing uk = (Existing) unode[upos]; int c = comparator.compare(uk, ik); while (true) { if (c == 0) { leaf().addKey(updateF.merge(uk, ik)); if (++upos < usz) uk = (Existing) unode[upos]; ik = insert.next(); if (ik == null) { builder.copy(unode, upos, usz - upos); return null; } if (upos == usz) break; c = comparator.compare(uk, ik); } else if (c < 0) { int ulim = exponentialSearch(comparator, unode, upos + 1, usz, ik); c = -searchResultToComparison(ulim); // 0 if match, 1 otherwise if (ulim < 0) ulim = -(1 + ulim); builder.copy(unode, upos, ulim - upos); if ((upos = ulim) == usz) break; uk = (Existing) unode[upos]; } else { builder.addKey(isSimple(updateF) ? ik : updateF.insert(ik)); c = insert.copyKeysSmallerThan(uk, comparator, builder, updateF); // 0 on match, -1 otherwise ik = insert.next(); if (ik == null) { builder.copy(unode, upos, usz - upos); return null; } } } if (uub == null || comparator.compare(ik, uub) < 0) { builder.addKey(isSimple(updateF) ? ik : updateF.insert(ik)); insert.copyKeysSmallerThan(uub, comparator, builder, updateF); // 0 on match, -1 otherwise ik = insert.next(); } return ik; } public void close() { reset(); pool.offer(this); pool = null; } void reset() { super.reset(); insert.reset(); } } static int searchResultToComparison(int searchResult) { return searchResult >> 31; } /** * Attempts to perform a clean transformation of the original tree into a new tree, * by replicating its original shape as far as possible. *

* We do this by attempting to flush our buffers whenever we finish a source-branch at the given level; * if there are too few contents, we wait until we finish another node at the same level. *

* This way, we are always resetting at the earliest point we might be able to reuse more parts of the original * tree, maximising potential reuse. *

* This can permit us to build unbalanced right-most nodes at each level, in which case we simply rebalance * when done. *

* The approach taken here hopefully balances simplicity, garbage generation and execution time. */ private static abstract class AbstractTransformer extends AbstractUpdater implements AutoCloseable { /** * An iterator over the tree we are updating */ final SimpleTreeIterator update = new SimpleTreeIterator(); /** * A queue of nodes from update that we are ready to "finish" if we have buffered enough data from them * The stack pointer is maintained inside of {@link #apply()} */ Object[][] queuedToFinish = new Object[1][]; AbstractTransformer() { allocated = -1; ensureParent(); parent.inUse = false; } abstract O apply(I v); Object[] apply(Object[] update) { int height = this.update.init(update); if (queuedToFinish.length < height - 1) queuedToFinish = new Object[height - 1][]; return apply(); } /** * We base our operation on the shape of {@code update}, trying to steal as much of the original tree as * possible for our new tree */ private Object[] apply() { Object[] unode = update.node(); int upos = update.position(), usz = sizeOfLeaf(unode); while (true) { // we always start the loop on a leaf node, for both input and output boolean propagatedOriginalLeaf = false; if (leaf().count == 0) { if (upos == 0) { // fast path - buffer is empty and input unconsumed, so may be able to propagate original I in; O out; do { // optimistic loop - find first point the transformation modified our input in = (I) unode[upos]; out = apply(in); } while (in == out && ++upos < usz); if ((propagatedOriginalLeaf = (upos == usz))) { // if input is unmodified by transformation, propagate the input node markUsed(parent).addChild(unode, usz); } else { // otherwise copy up to the first modified portion, // and fall-through to our below condition for transforming the remainder leaf().copyNoOverflow(unode, 0, upos++); if (out != null) leaf().addKeyNoOverflow(out); } } if (!propagatedOriginalLeaf) transformLeafNoOverflow(unode, upos, usz); } else { transformLeaf(unode, upos, usz); } // we've finished a leaf, and have to hand it to a parent alongside its right-hand key // so now we try to do two things: // 1) find the next unfiltered key from our unfinished parent // 2) determine how many parents are "finished" and whose buffers we should also attempt to propagate // we do (1) unconditionally, because: // a) we need to handle the branch keys somewhere, and it may as well happen in one place // b) we either need more keys for our incomplete leaf; or // c) we need a key to go after our last propagated node in any unfinished parent int finishToHeight = 0; O nextKey; do { update.ascendToParent(); // always have a node above leaf level, else we'd invoke transformLeaf BranchBuilder level = parent; unode = update.node(); upos = update.position(); usz = shallowSizeOfBranch(unode); while (upos == usz) { queuedToFinish[level.height - 2] = unode; finishToHeight = max(finishToHeight, level.height); if (!update.ascendToParent()) return finishAndDrain(propagatedOriginalLeaf); level = level.ensureParent(); unode = update.node(); upos = update.position(); usz = shallowSizeOfBranch(unode); } nextKey = apply((I) unode[upos]); if (nextKey == null && leaf().count > MIN_KEYS) // if we don't have a key, try to steal from leaf().buffer nextKey = (O) leaf().buffer[--leaf().count]; update.descendIntoNextLeaf(unode, upos, usz); unode = update.node(); upos = update.position(); usz = sizeOfLeaf(unode); // nextKey might have been filtered, so we may need to look in this next leaf for it while (nextKey == null && upos < usz) nextKey = apply((I) unode[upos++]); // if we still found no key loop and try again on the next parent, leaf, parent... ad infinitum } while (nextKey == null); // we always end with unode a leaf, though it may be that upos == usz and that we will do nothing with it // we've found a non-null key, now decide what to do with it: // 1) if we have insufficient keys in our leaf, simply append to the leaf and continue; // 2) otherwise, walk our parent branches finishing those *before* {@code finishTo} // 2a) if any cannot be finished, append our new key to it and stop finishing further parents; they // will be finished the next time we ascend to their level with a complete chain of finishable branches // 2b) otherwise, add our new key to {@code finishTo} if (!propagatedOriginalLeaf && !finish(leaf(), null)) { leaf().addKeyNoOverflow(nextKey); continue; } BranchBuilder finish = parent; while (true) { if (finish.height <= finishToHeight) { Object[] originalNode = queuedToFinish[finish.height - 2]; if (finish(finish, originalNode)) { finish = finish.parent; continue; } } // add our key to the last unpropagated parent branch buffer finish.addKey(nextKey); break; } } } private void transformLeafNoOverflow(Object[] unode, int upos, int usz) { while (upos < usz) { O v = apply((I) unode[upos++]); leaf().maybeAddKeyNoOverflow(v); } } private void transformLeaf(Object[] unode, int upos, int usz) { while (upos < usz) { O v = apply((I) unode[upos++]); leaf().maybeAddKey(v); } } /** * Invoked when we are finished transforming a branch. If the buffer contains insufficient elements, * we refuse to construct a leaf and return null. Otherwise we propagate the branch to its parent's buffer * and return the branch we have constructed. */ private boolean finish(LeafOrBranchBuilder level, Object[] unode) { if (!level.isSufficient()) return false; level.drainAndPropagate(unode, level.ensureParent()); return true; } /** * Invoked once we have consumed all input. *

* Completes all unfinished buffers. If they do not contain enough keys, data is stolen from the preceding * node to the left on the same level. This is easy if our parent already contains a completed child; if it * does not, we recursively apply the stealing procedure to obtain a non-empty parent. If this process manages * to reach the root and still find no preceding branch, this will result in making this branch the new root. */ private Object[] finishAndDrain(boolean skipLeaf) { LeafOrBranchBuilder level = leaf(); if (skipLeaf) { level = nonEmptyParentMaybeSteal(level); // handle an edge case, where we have propagated a single complete leaf but have no other contents in any parent if (level == null) return (Object[]) leaf().parent.buffer[MAX_KEYS]; } while (true) { BranchBuilder parent = nonEmptyParentMaybeSteal(level); if (parent != null && !level.isSufficient()) { Object[] result = stealAndMaybeRepropagate(level, parent); if (result != null) return result; } else { Object[] originalNode = level == leaf() ? null : queuedToFinish[level.height - 2]; Object[] result = level.drainAndPropagate(originalNode, parent); if (parent == null) return result; } level = parent; } } BranchBuilder nonEmptyParentMaybeSteal(LeafOrBranchBuilder level) { if (level.hasOverflow()) return level.ensureParent(); BranchBuilder parent = level.parent; if (parent == null || !parent.inUse || (parent.isEmpty() && !tryPrependFromParent(parent))) return null; return parent; } /** * precondition: {@code fill.parentInUse()} must return {@code fill.parent} *

* Steal some data from our ancestors, if possible. * 1) If no ancestor has any data to steal, simply drain and return the current contents. * 2) If we exhaust all of our ancestors, and are not now ourselves overflowing, drain and return * 3) Otherwise propagate the redistributed contents to our parent and return null, indicating we can continue to parent * * @return {@code null} if {@code parent} is still logicallly in use after we execute; * otherwise the return value is the final result */ private Object[] stealAndMaybeRepropagate(LeafOrBranchBuilder fill, BranchBuilder parent) { // parent already stole, we steal one from it prependFromParent(fill, parent); // if we've emptied our parent, attempt to restore it from our grandparent, // this is so that we can determine an accurate exhausted status boolean exhausted = !fill.hasOverflow() && parent.isEmpty() && !tryPrependFromParent(parent); if (exhausted) return fill.drain(); fill.drainAndPropagate(null, parent); return null; } private boolean tryPrependFromParent(BranchBuilder parent) { BranchBuilder grandparent = nonEmptyParentMaybeSteal(parent); if (grandparent == null) return false; prependFromParent(parent, grandparent); return true; } // should only be invoked with parent = parentIfStillInUse(fill), if non-null result private void prependFromParent(LeafOrBranchBuilder fill, BranchBuilder parent) { assert !parent.isEmpty(); Object[] predecessor; Object predecessorNextKey; // parent will have same number of children as shallow key count (and may be empty) if (parent.count == 0 && parent.hasOverflow()) { // use the saved buffer instead of going to our parent predecessorNextKey = parent.savedNextKey; predecessor = (Object[]) parent.savedBuffer[2 * MAX_KEYS]; Object[] tmpBuffer = parent.savedBuffer; int[] tmpSizes = parent.savedSizes; parent.savedBuffer = parent.buffer; parent.savedSizes = parent.sizes; parent.buffer = tmpBuffer; parent.sizes = tmpSizes; parent.savedNextKey = null; parent.count = MAX_KEYS; // end with MAX_KEYS keys and children in parent, having stolen MAX_KEYS+1 child and savedNextKey } else { --parent.count; predecessor = (Object[]) parent.buffer[MAX_KEYS + parent.count]; predecessorNextKey = parent.buffer[parent.count]; } fill.prepend(predecessor, predecessorNextKey); } void reset() { Arrays.fill(queuedToFinish, 0, update.leafDepth, null); update.reset(); super.reset(); } } private static class Transformer extends AbstractTransformer { static final TinyThreadLocalPool POOL = new TinyThreadLocalPool<>(); TinyThreadLocalPool.TinyPool pool; Function apply; O apply(I v) { return apply.apply(v); } static Transformer get(Function apply) { TinyThreadLocalPool.TinyPool pool = POOL.get(); Transformer transformer = pool.poll(); if (transformer == null) transformer = new Transformer<>(); transformer.pool = pool; transformer.apply = apply; return transformer; } public void close() { apply = null; reset(); pool.offer(this); pool = null; } } private static class BiTransformer extends AbstractTransformer { static final TinyThreadLocalPool POOL = new TinyThreadLocalPool<>(); BiFunction apply; I2 i2; TinyThreadLocalPool.TinyPool pool; O apply(I i1) { return apply.apply(i1, i2); } static BiTransformer get(BiFunction apply, I2 i2) { TinyThreadLocalPool.TinyPool pool = POOL.get(); BiTransformer transformer = pool.poll(); if (transformer == null) transformer = new BiTransformer<>(); transformer.pool = pool; transformer.apply = apply; transformer.i2 = i2; return transformer; } public void close() { apply = null; i2 = null; reset(); pool.offer(this); pool = null; } } /** * A base class for very simple walks of a tree without recursion, supporting reuse */ private static abstract class SimpleTreeStack { // stack we have descended, with 0 the root node Object[][] nodes; /** * the child node we are in, if at lower height, or the key we are on otherwise * can be < 0, indicating we have not yet entered the contents of the node, and are deliberating * whether we descend or consume the contents without descending */ int[] positions; int depth, leafDepth; void reset() { Arrays.fill(nodes, 0, leafDepth + 1, null); // positions gets zero'd during descent } Object[] node() { return nodes[depth]; } int position() { return positions[depth]; } } // Similar to SimpleTreeNavigator, but visits values eagerly // (the exception being ascendToParent(), which permits iterating through finished parents). // Begins by immediately descending to first leaf; if empty terminates immediately. private static class SimpleTreeIterator extends SimpleTreeStack { int init(Object[] tree) { int maxHeight = maxRootHeight(size(tree)); if (positions == null || maxHeight >= positions.length) { positions = new int[maxHeight + 1]; nodes = new Object[maxHeight + 1][]; } nodes[0] = tree; if (isEmpty(tree)) { // already done leafDepth = 0; depth = -1; } else { depth = 0; positions[0] = 0; while (!isLeaf(tree)) { tree = (Object[]) tree[shallowSizeOfBranch(tree)]; nodes[++depth] = tree; positions[depth] = 0; } leafDepth = depth; } return leafDepth + 1; } void descendIntoNextLeaf(Object[] node, int pos, int sz) { positions[depth] = ++pos; ++depth; nodes[depth] = node = (Object[]) node[sz + pos]; positions[depth] = 0; while (depth < leafDepth) { ++depth; nodes[depth] = node = (Object[]) node[shallowSizeOfBranch(node)]; positions[depth] = 0; } } boolean ascendToParent() { if (depth < 0) return false; return --depth >= 0; } } private static class SimpleTreeKeysIterator { int leafSize; int leafPos; Object[] leaf; Object[][] nodes; int[] positions; int depth; void init(Object[] tree) { int maxHeight = maxRootHeight(size(tree)); if (positions == null || maxHeight >= positions.length) { positions = new int[maxHeight + 1]; nodes = new Object[maxHeight + 1][]; } depth = 0; descendToLeaf(tree); } void reset() { leaf = null; Arrays.fill(nodes, 0, nodes.length, null); } Insert next() { if (leafPos < leafSize) // fast path return (Insert) leaf[leafPos++]; if (depth == 0) return null; Object[] node = nodes[depth - 1]; final int position = positions[depth - 1]; Insert result = (Insert) node[position]; advanceBranch(node, position + 1); return result; } private void advanceBranch(Object[] node, int position) { int count = shallowSizeOfBranch(node); if (position < count) positions[depth - 1] = position; else --depth; // no more children in this branch, remove from stack descendToLeaf((Object[]) node[count + position]); } void descendToLeaf(Object[] node) { while (!isLeaf(node)) { nodes[depth] = node; positions[depth] = 0; node = (Object[]) node[shallowSizeOfBranch(node)]; ++depth; } leaf = node; leafPos = 0; leafSize = sizeOfLeaf(node); } int copyKeysSmallerThan(Compare bound, Comparator comparator, LeafBuilder builder, UpdateFunction transformer) { while (true) { int lim = exponentialSearchForMaybeInfinity(comparator, leaf, leafPos, leafSize, bound); int end = lim >= 0 ? lim : -1 - lim; if (end > leafPos) { builder.copy(leaf, leafPos, end - leafPos, transformer); leafPos = end; } if (end < leafSize) return searchResultToComparison(lim); // 0 if next is a match for bound, -1 otherwise if (depth == 0) return -1; Object[] node = nodes[depth - 1]; final int position = positions[depth - 1]; Insert branchKey = (Insert) node[position]; int cmp = compareWithMaybeInfinity(comparator, branchKey, bound); if (cmp >= 0) return -cmp; builder.addKey(isSimple(transformer) ? branchKey : transformer.insert(branchKey)); advanceBranch(node, position + 1); } } } }