All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.cql3.functions.masking.ColumnMask Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.cassandra.cql3.functions.masking;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Objects;

import com.google.common.collect.ImmutableList;
import org.apache.commons.lang3.StringUtils;

import org.apache.cassandra.config.DatabaseDescriptor;
import org.apache.cassandra.cql3.AssignmentTestable;
import org.apache.cassandra.cql3.CQL3Type;
import org.apache.cassandra.cql3.ColumnIdentifier;
import org.apache.cassandra.cql3.CqlBuilder;
import org.apache.cassandra.cql3.Term;
import org.apache.cassandra.cql3.Terms;
import org.apache.cassandra.cql3.functions.Arguments;
import org.apache.cassandra.cql3.functions.Function;
import org.apache.cassandra.cql3.functions.FunctionName;
import org.apache.cassandra.cql3.functions.FunctionResolver;
import org.apache.cassandra.cql3.functions.ScalarFunction;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.db.marshal.ReversedType;
import org.apache.cassandra.exceptions.InvalidRequestException;
import org.apache.cassandra.transport.ProtocolVersion;

import static java.lang.String.format;
import static org.apache.cassandra.cql3.statements.RequestValidations.invalidRequest;

/**
 * Dynamic data mask that can be applied to a schema column.
 * 

* It consists on a partial application of a certain {@link MaskingFunction} to the values of a column, with the * precondition that the type of any masked column is compatible with the type of the first argument of the function. *

* This partial application is meant to be associated to specific columns in the schema, acting as a mask for the values * of those columns. It's associated to queries such as: *

 *    CREATE TABLE t (k int PRIMARY KEY, v int MASKED WITH mask_inner(1, 1));
 *    ALTER TABLE t ALTER v MASKED WITH mask_inner(2, 1);
 *    ALTER TABLE t ALTER v DROP MASKED;
 * 
* Note that in the example above we are referencing the {@code mask_inner} function with two arguments. However, that * CQL function actually has three arguments. The first argument is always ommitted when attaching the function to a * schema column. The value of that first argument is always the value of the masked column, in this case an int. */ public class ColumnMask { public static final String DISABLED_ERROR_MESSAGE = "Cannot mask columns because dynamic data masking is not " + "enabled. You can enable it with the " + "dynamic_data_masking_enabled property on cassandra.yaml"; /** The CQL function used for masking. */ public final ScalarFunction function; /** The values of the arguments of the partially applied masking function. */ protected final ByteBuffer[] partialArgumentValues; public ColumnMask(ScalarFunction function, ByteBuffer... partialArgumentValues) { assert function.argTypes().size() == partialArgumentValues.length + 1; this.function = function; this.partialArgumentValues = partialArgumentValues; } /** * @return The types of the arguments of the partially applied masking function, as an unmodifiable list. */ public List> partialArgumentTypes() { List> argTypes = function.argTypes(); return argTypes.size() == 1 ? Collections.emptyList() : Collections.unmodifiableList(argTypes.subList(1, argTypes.size())); } /** * @return The values of the arguments of the partially applied masking function, as an unmodifiable list that can * contain nulls. */ public List partialArgumentValues() { return Collections.unmodifiableList(Arrays.asList(partialArgumentValues)); } /** * @return A copy of this mask for a version of its masked column that has its type reversed. */ public ColumnMask withReversedType() { AbstractType reversed = ReversedType.getInstance(function.argTypes().get(0)); List> args = ImmutableList.>builder() .add(reversed) .addAll(partialArgumentTypes()) .build(); Function newFunction = FunctionResolver.get(function.name().keyspace, function.name(), args, null, null, null); assert newFunction != null; return new ColumnMask((ScalarFunction) newFunction, partialArgumentValues); } /** * @param version the used version of the transport protocol * @return a masker instance that caches the terminal masking function arguments */ public Masker masker(ProtocolVersion version) { return new Masker(version, function, partialArgumentValues); } public static class Masker { private final ScalarFunction function; private final Arguments arguments; private Masker(ProtocolVersion version, ScalarFunction function, ByteBuffer[] partialArgumentValues) { this.function = function; arguments = function.newArguments(version); for (int i = 0; i < partialArgumentValues.length; i++) arguments.set(i + 1, partialArgumentValues[i]); } public ByteBuffer mask(ByteBuffer value) { arguments.set(0, value); return function.execute(arguments); } } public static void ensureEnabled() { if (!DatabaseDescriptor.getDynamicDataMaskingEnabled()) throw new InvalidRequestException(DISABLED_ERROR_MESSAGE); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; ColumnMask mask = (ColumnMask) o; return function.name().equals(mask.function.name()) && Arrays.equals(partialArgumentValues, mask.partialArgumentValues); } @Override public int hashCode() { return Objects.hash(function.name(), Arrays.hashCode(partialArgumentValues)); } @Override public String toString() { List> types = partialArgumentTypes(); List arguments = new ArrayList<>(types.size()); for (int i = 0; i < types.size(); i++) { CQL3Type type = types.get(i).asCQL3Type(); ByteBuffer value = partialArgumentValues[i]; arguments.add(type.toCQLLiteral(value)); } return format("%s(%s)", function.name(), StringUtils.join(arguments, ", ")); } public void appendCqlTo(CqlBuilder builder) { builder.append(" MASKED WITH ").append(toString()); } /** * A parsed but not prepared column mask. */ public final static class Raw { public final FunctionName name; public final List rawPartialArguments; public Raw(FunctionName name, List rawPartialArguments) { this.name = name; this.rawPartialArguments = rawPartialArguments; } public ColumnMask prepare(String keyspace, String table, ColumnIdentifier column, AbstractType type) { ScalarFunction function = findMaskingFunction(keyspace, table, column, type); ByteBuffer[] partialArguments = preparePartialArguments(keyspace, function); return new ColumnMask(function, partialArguments); } private ScalarFunction findMaskingFunction(String keyspace, String table, ColumnIdentifier column, AbstractType type) { List args = new ArrayList<>(rawPartialArguments.size() + 1); args.add(type); args.addAll(rawPartialArguments); Function function = FunctionResolver.get(keyspace, name, args, keyspace, table, type); if (function == null) throw invalidRequest("Unable to find masking function for %s, " + "no declared function matches the signature %s", column, this); if (function.isAggregate()) throw invalidRequest("Aggregate function %s cannot be used for masking table columns", this); if (function.isNative() && !(function instanceof MaskingFunction)) throw invalidRequest("Not-masking function %s cannot be used for masking table columns", this); if (!function.isNative() && !function.name().keyspace.equals(keyspace)) throw invalidRequest("Masking function %s doesn't belong to the same keyspace as the table %s.%s", this, keyspace, table); CQL3Type returnType = function.returnType().asCQL3Type(); CQL3Type expectedType = type.asCQL3Type(); if (!returnType.equals(expectedType)) throw invalidRequest("Masking function %s return type is %s. " + "This is different to the type of the masked column %s of type %s. " + "Masking functions can only be attached to table columns " + "if they return the same data type as the masked column.", this, returnType, column, expectedType); return (ScalarFunction) function; } private ByteBuffer[] preparePartialArguments(String keyspace, ScalarFunction function) { // Note that there could be null arguments ByteBuffer[] arguments = new ByteBuffer[rawPartialArguments.size()]; for (int i = 0; i < rawPartialArguments.size(); i++) { String term = rawPartialArguments.get(i).toString(); AbstractType type = function.argTypes().get(i + 1); arguments[i] = Terms.asBytes(keyspace, term, type); } return arguments; } @Override public String toString() { return format("%s(%s)", name, StringUtils.join(rawPartialArguments, ", ")); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy