org.apache.cassandra.db.rows.DeserializationHelper Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cassandra-all Show documentation
Show all versions of cassandra-all Show documentation
The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.cassandra.db.rows;
import java.nio.ByteBuffer;
import java.util.*;
import org.apache.cassandra.db.marshal.ValueAccessor;
import org.apache.cassandra.schema.ColumnMetadata;
import org.apache.cassandra.schema.TableMetadata;
import org.apache.cassandra.db.*;
import org.apache.cassandra.db.context.CounterContext;
import org.apache.cassandra.db.filter.ColumnFilter;
import org.apache.cassandra.schema.DroppedColumn;
public class DeserializationHelper
{
/**
* Flag affecting deserialization behavior (this only affect counters in practice).
* - LOCAL: for deserialization of local data (Expired columns are
* converted to tombstones (to gain disk space)).
* - FROM_REMOTE: for deserialization of data received from remote hosts
* (Expired columns are converted to tombstone and counters have
* their delta cleared)
* - PRESERVE_SIZE: used when no transformation must be performed, i.e,
* when we must ensure that deserializing and reserializing the
* result yield the exact same bytes. Streaming uses this.
*/
public enum Flag
{
LOCAL, FROM_REMOTE, PRESERVE_SIZE
}
private final Flag flag;
public final int version;
private final ColumnFilter columnsToFetch;
private ColumnFilter.Tester tester;
private final boolean hasDroppedColumns;
private final Map droppedColumns;
private DroppedColumn currentDroppedComplex;
public DeserializationHelper(TableMetadata metadata, int version, Flag flag, ColumnFilter columnsToFetch)
{
this.flag = flag;
this.version = version;
this.columnsToFetch = columnsToFetch;
this.droppedColumns = metadata.droppedColumns;
this.hasDroppedColumns = droppedColumns.size() > 0;
}
public DeserializationHelper(TableMetadata metadata, int version, Flag flag)
{
this(metadata, version, flag, null);
}
public boolean includes(ColumnMetadata column)
{
return columnsToFetch == null || columnsToFetch.fetches(column);
}
public boolean includes(Cell> cell, LivenessInfo rowLiveness)
{
if (columnsToFetch == null)
return true;
// During queries, some columns are included even though they are not queried by the user because
// we always need to distinguish between having a row (with potentially only null values) and not
// having a row at all (see #CASSANDRA-7085 for background). In the case where the column is not
// actually requested by the user however (canSkipValue), we can skip the full cell if the cell
// timestamp is lower than the row one, because in that case, the row timestamp is enough proof
// of the liveness of the row. Otherwise, we'll only be able to skip the values of those cells.
ColumnMetadata column = cell.column();
if (column.isComplex())
{
if (!includes(cell.path()))
return false;
return !canSkipValue(cell.path()) || cell.timestamp() >= rowLiveness.timestamp();
}
else
{
return columnsToFetch.fetchedColumnIsQueried(column) || cell.timestamp() >= rowLiveness.timestamp();
}
}
public boolean includes(CellPath path)
{
return path == null || tester == null || tester.fetches(path);
}
public boolean canSkipValue(ColumnMetadata column)
{
return columnsToFetch != null && !columnsToFetch.fetchedColumnIsQueried(column);
}
public boolean canSkipValue(CellPath path)
{
return path != null && tester != null && !tester.fetchedCellIsQueried(path);
}
public void startOfComplexColumn(ColumnMetadata column)
{
this.tester = columnsToFetch == null ? null : columnsToFetch.newTester(column);
this.currentDroppedComplex = droppedColumns.get(column.name.bytes);
}
public void endOfComplexColumn()
{
this.tester = null;
}
public boolean isDropped(Cell> cell, boolean isComplex)
{
if (!hasDroppedColumns)
return false;
DroppedColumn dropped = isComplex ? currentDroppedComplex : droppedColumns.get(cell.column().name.bytes);
return dropped != null && cell.timestamp() <= dropped.droppedTime;
}
public boolean isDroppedComplexDeletion(DeletionTime complexDeletion)
{
return currentDroppedComplex != null && complexDeletion.markedForDeleteAt() <= currentDroppedComplex.droppedTime;
}
public V maybeClearCounterValue(V value, ValueAccessor accessor)
{
return flag == Flag.FROM_REMOTE || (flag == Flag.LOCAL && CounterContext.instance().shouldClearLocal(value, accessor))
? CounterContext.instance().clearAllLocal(value, accessor)
: value;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy